
Computing Department

Lancaster University

United Kingdom

A Component-based

Active Router Architecture

Stefan Schmid

Submitted for the Degree of

Doctor of Philosophy

November 2002

Abstract

Current Internet protocols and network services have been struggling to keep up with

the fast evolution from traditional data to today’s multimedia communication technolo-

gies and the changing requirements following these advances (for example, support for

QoS, multicast, mobility, and security is still lacking in most networks). Active and pro-

grammable networking is a step towards enhancing the static and inflexible structures

of current networks. As part of the general research trend, this thesis focuses on the

design and development of technologies that allow rapid deployment of new functional-

ity throughout the network (for example, customised network services and protocols),

which allows network vendors and service providers to respond quickly to the chang-

ing requirements and keep up with the fast evolution in network and communication

technologies.

This thesis starts off with an general introduction into the research area and a de-

scription of the basic mechanisms behind active networking. A critical examination

of existing active and programmable systems and associated technologies is provided.

These results together with previous experiences of developing an active network system

lead to a set of fundamental requirements for active nodes. The core of the thesis presents

the design and implementation of a novel active router architecture that enables flexible

network programmability based on so-called ‘active components’. This second genera-

tion Lancaster Active Router Architecture (LARA++) is designed to provide maximum

flexibility for the development of future network functionality and services. Its com-

prehensive service composition framework enables flexible programmability through the

transparent integration of active components into the router’s data path. Finally, the

success of the node architecture and its prototype implementation is evaluated by means

of a few concrete applications. This shows that LARA++ offers sufficient flexibility and

extensibility to augment the network in ways that suit today’s fast evolving internetwork

platform, and the prototype implementation confirms that the research platform offers

acceptable performance for edge-routers of small-to-medium sized network environments.

i

Acknowledgements

Although my name is the sole name on the front page, this thesis has only become a

reality due to the countless contributions of many people whom I want to thank here:

I would like to express my sincere thanks to my supervisor Professor David Hutchison

for his professional guidance and great support throughout all my studies and my work

at Lancaster University. He has taught me much – about academia and beyond – for

which I am very thankful.

I am also very grateful to my colleagues of the Distributed Multimedia Research

Group at Lancaster for all their inspiration and assistance over the last four years. In

particular, I thank Professor Doug Shepherd who has always been a source of encour-

agement and support. In addition, I would like to express special gratitude to my close

colleagues and friends Dr. Andrew Scott and Dr. Joe Finney for their constructive dis-

cussions and invaluable comments on my work.

Special thanks also go to my colleagues Tim Chart, Manolis Sifalakis and Daniel

Prince for their useful comments on drafts of this thesis and their involvement in sur-

rounding discussions. Tim in particular has helped a great deal during the final imple-

mentation phase.

Most of the research was carried out in cooperation with industrial research labo-

ratories. I am particularly thankful to my sponsors Cisco Systems, Orange and above

all Microsoft Research for their financial support. Through this I met many interesting

people, and gained insights into their industrial experience and outlook, which had an

important impact on the way I think about research.

I have also been very blessed to meet my fiancée Euline during this time. She has

brought great happiness into my life. Her love and support mean the world to me.

Finally, thanks be to God who has been a great source of strength and motivation

throughout my life.

I want to dedicate this thesis to my parents who have given me the chance of a good

education, and so much love and support over the years. I probably owe them much

more then they think.

ii

Declaration

This thesis has been written by myself, and the work reported in it is my own. The

documented research has been carried out at Lancaster University as part of the Land-

MARC project [Lan01] and the Mobile-IPv6 Systems Research Lab [MSR01].

The work reported in this thesis has not been previously submitted for a degree in this

or any other form.

Lancaster, November 2002 Stefan Schmid

iii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Network Evolution . 1

1.3 Active Networking . 4

1.3.1 Why do we need active networks? 5

1.3.2 Who are the beneficiaries? . 7

1.4 Research Challenges . 7

1.5 Thesis Structure . 10

2 Active and Programmable Networks 12

2.1 Overview . 12

2.2 Background . 12

2.3 Programmable Networks . 13

2.3.1 Active Networks . 14

2.3.2 Intelligent Networks . 15

2.3.3 Open Signalling . 15

2.4 Active Network Methodology . 17

2.4.1 Taxonomy . 18

2.4.1.1 Active Packets vs. Active Extensions 19

2.4.1.2 Further Terminologies . 20

2.4.2 Architectural Consideration . 22

2.5 Architectural Overview of Active Nodes 24

2.5.1 Active Node OS . 25

2.5.1.1 NodeOS Interface . 25

2.5.2 Execution Environments . 26

2.5.3 Summary . 26

2.6 Programming Models . 27

2.6.1 Program Distribution . 27

2.6.1.1 In-band Approach . 27

iv

CONTENTS v

2.6.1.2 Out-of-band Approach 27

2.6.1.3 Combination of In-band and Out-of-band Approach . . . 28

2.6.2 Program Encoding . 29

2.6.2.1 Interpreted Code . 29

2.6.2.2 Intermediate Code . 30

2.6.2.3 Binary Code . 30

2.6.2.4 Source Code . 31

2.6.2.5 Self-specialising Code . 32

2.6.2.6 Summary . 32

2.7 Service Composition . 33

2.8 Safety & Security . 35

2.8.1 Safety . 36

2.8.1.1 Systems Mechanisms . 37

2.8.1.2 Programming Language Mechanisms 38

2.8.2 Security . 40

2.8.2.1 Authentication . 41

2.8.2.2 Access Control . 42

2.8.2.3 Module-Thinning . 42

2.9 Summary . 43

3 Related Work 44

3.1 Overview . 44

3.2 Active Network Architectures . 45

3.2.1 Integrated Active Network Solutions 46

3.2.1.1 ANTS – Active Capsules 46

3.2.1.2 PLAN . 47

3.2.1.3 SmartPackets . 49

3.2.1.4 Related and Subsequent Work 50

3.2.2 Discrete Active Network Solutions 51

3.2.2.1 SwitchWare . 52

3.2.2.2 NetScript . 53

3.2.2.3 Bowman & CANEs . 54

3.2.2.4 Joust . 56

3.2.2.5 LARA . 58

3.2.2.6 Click . 59

3.2.2.7 Router Plugins . 60

3.2.2.8 Related and Subsequent Work 62

3.2.3 Comparison of the Integrated and Discrete Approach 64

CONTENTS vi

3.3 Enabling Technologies . 65

3.3.1 Operating System Support . 65

3.3.1.1 Scout . 66

3.3.1.2 Pronto . 66

3.3.1.3 OSKit and Janos . 67

3.3.1.4 Genesis Kernel . 68

3.3.1.5 SPIN . 68

3.3.1.6 Dynamic Kernel Extensibility 69

3.3.2 Safety and Security Mechanisms 69

3.4 Applications and Services . 71

3.5 Summary . 74

4 Active Network Requirements 76

4.1 Overview . 76

4.2 Requirements . 76

4.2.1 Class A Requirements . 77

4.2.1.1 Programmability . 77

4.2.1.2 Flexibility . 78

4.2.1.3 Safety . 79

4.2.1.4 Security . 80

4.2.1.5 Resource Control . 80

4.2.1.6 Adequate Performance 81

4.2.1.7 Sufficient Manageability 81

4.2.2 Class B Requirements . 82

4.2.2.1 Interoperability . 82

4.2.2.2 High Performance . 83

4.2.2.3 Scalable Manageability 84

4.2.2.4 Business Model . 84

4.2.2.5 QoS Support . 84

4.3 LARA++ Design Requirements . 85

4.3.1 Flexible Extensibility . 86

4.3.2 Moderate Performance . 87

4.3.3 Highly Dynamic Programmability 87

4.3.4 Easy Usability . 87

4.3.5 Safe Code Execution . 88

4.3.6 Secure Programmability . 88

4.3.7 Scalable Manageability . 89

4.3.8 Summary of LARA++ Requirements 89

CONTENTS vii

4.4 Summary . 90

5 The LARA++ Architecture 91

5.1 Overview . 91

5.2 Motivation . 92

5.2.1 An Example Scenario . 93

5.3 Background Work . 93

5.4 System Design . 95

5.4.1 Edge Device . 95

5.4.2 Programming Model . 96

5.4.3 Component Architecture . 97

5.5 Node Architecture . 98

5.5.1 Components . 100

5.5.2 Processing Environments . 101

5.5.3 Policy Domains . 102

5.5.4 Active NodeOS . 103

5.6 Service Composition . 105

5.6.1 Operational Overview . 105

5.6.2 Packet Classifier . 107

5.6.3 Packet Filters . 108

5.6.4 Classification Graph . 110

5.6.5 Classification Graph Table . 110

5.6.6 Characteristics . 111

5.6.7 An Example . 112

5.7 Safety and Security . 113

5.7.1 Goals . 113

5.7.2 Safe Execution of Active Code . 113

5.7.2.1 Memory Protection . 114

5.7.2.2 Pre-emptive Thread Scheduling 114

5.7.3 Security Mechanisms . 115

5.7.3.1 Authentication . 115

5.7.3.2 Code Signatures . 116

5.7.3.3 Access Control . 116

5.8 Policing . 117

5.8.1 Policy Enforcement . 117

5.8.2 Policy Specification . 118

5.9 Summary . 120

CONTENTS viii

6 Implementation 122

6.1 Overview . 122

6.2 Router Platforms . 122

6.3 Active Node OS . 123

6.3.1 Packet Interceptor / Injector . 124

6.3.2 Packet Classifier . 124

6.3.3 Packet Channels . 128

6.3.4 System Call Control . 129

6.3.5 Policing Component . 131

6.4 Policy Domains . 132

6.5 Processing Environments . 133

6.5.1 Component Bootstrapper . 134

6.5.2 System API . 135

6.5.3 Active Component Scheduler . 135

6.6 Active and Passive Components . 137

6.6.1 Implementation Process . 138

6.6.2 Debugging and Testing . 138

6.6.3 Example Active Components . 139

6.6.3.1 Local Congestion Control 139

6.6.3.2 Server Load Balancing 141

6.6.3.3 Component Loader . 142

6.7 Summary . 143

7 Evaluation 144

7.1 Overview . 144

7.2 Evaluation Methods . 144

7.3 Qualitative Evaluation . 145

7.3.1 Case Study – An Evaluation Scenario 145

7.3.1.1 The Setting . 145

7.3.1.2 The Challenges . 146

7.3.1.3 The Solutions . 147

7.3.1.4 Discussion . 152

7.3.2 Requirement Fulfilment . 155

7.4 Quantitative Evaluation . 160

7.4.1 Active Component Scheduler . 161

7.4.2 Packet Channels . 162

7.4.3 Packet Classification . 165

7.4.4 Component Loading . 168

CONTENTS ix

7.4.5 Discussion . 169

7.5 Summary . 174

8 Conclusion and Further Work 176

8.1 Overview . 176

8.2 Thesis Summary . 176

8.3 Contributions . 179

8.3.1 Extension of Architectural Framework for Active Nodes 179

8.3.2 Component-based Active Router Architecture 179

8.3.3 Flexible Service Composition Framework 180

8.3.4 Transparent Service Integration . 181

8.3.5 Policy-based Security Model . 181

8.3.6 Scalable Manageability to Support End-user Programmability . . . 182

8.3.7 Commercial Viability . 182

8.3.8 Prototype Platform Implementation 182

8.4 Further Work . 183

8.4.1 Mobile-IPv6 Testbed . 183

8.4.2 ProgNet Project . 184

8.5 Concluding Remarks . 185

A Common Packet Filter Properties 188

B Policy Specification 190

B.1 Installation of Active Components . 190

B.2 Installation of Packet Filter . 191

B.3 Run-time Security . 192

References 193

List of Figures

1.1 Evolution — From traditional Networking to Active Networking 4

2.1 A Comparison of Programmable Network Approaches 14

2.2 The P.1520 Reference Model for Open Signalling 16

2.3 Active Networks and the OSI Reference Model 24

2.4 The Active Node Architecture according to the DARPA ANWG 24

2.5 A Comparison of Composition Models for Active Node Architectures . . . 35

3.1 The Bowman NodeOS . 55

3.2 The LARA Hardware Architecture . 58

5.1 Scalability of the LARA++ Software Architecture 95

5.2 A Conceptual View of the Active Component Space 98

5.3 The layered active node architecture of LARA++ 99

5.4 LARA++ Component Interfaces . 100

5.5 The LARA++ Active NodeOS . 103

5.6 A Simplistic Classification Graph . 107

5.7 The Classification Graph and the different Filter Types 109

6.1 The LARA++ Classifier Architecture . 125

6.2 Zero-Copy Packet Channels . 129

6.3 System Call Control Mechanism . 130

7.1 The Mobile IPv6 Testbed Infrastructure 146

7.2 The Mobile IPv6 Convergence Time after Handoff 150

7.3 Comparison of Context-switch Times for different Threading Approaches 161

7.4 Processing Load on a standard Win2K Router 163

7.5 Processing Load on a LARA++ Active Router 164

7.6 Packet Channel Processing Latency . 164

7.7 Classification Throughput (for pre-defined packet paths) 167

7.8 Breakdown of Classification Latency . 168

x

LIST OF FIGURES xi

7.9 Average Component Loading Times . 169

7.10 Trade-off between modularity and performance 173

List of Tables

2.1 Summary of Basic Operational Modes for Active Network Approaches . . 21

2.2 Comparison of Encoding Techniques . 33

7.1 LARA++ Compliance with relevant Active Network Requirements 155

7.2 Distribution of Packet Channel Processing Times 165

7.3 Approximate Processing Latencies introduced by LARA++ 172

7.4 Estimation of Active Component Count for various Throughputs 173

xii

Selected Publications and Presentations

The LARA++ Active Network Architecture

Component-based Active Network Architecture

S. Schmid, J. Finney, A. Scott and D. Shepherd, July 2001.

In Proceedings of 6th IEEE Symposium on Computers and Communications (ISCC),

pages 114–121, Hammamet (Tunisia).

LARA++: A Component-based Active Router Architecture

S. Schmid and D. Hutchison, February 2002.

Invited presentation at Dagstuhl-Seminar 02071: Concepts and Applications of Pro-

grammable and Active Networking Technologies, Dagstuhl (Germany).

Implementation and Evaluation Aspects

Flexible, Dynamic and Scalable Service Composition for Active Routers

S. Schmid, T. Chart, M. Sifalakis and A.C. Scott, December 2002.

In Proceedings of 4th International Working Conference on Active Networks (IWAN),

Lecture Notes in Computer Science (volume 2546), Springer-Verlag, pages 253–266,

Zurich (Switzerland).

Applications for LARA++ Active Routers

Active Component Driven Network Handoff for Mobile Multimedia System

S. Schmid, J. Finney, A. Scott and D. Shepherd, October 2000.

In Proceedings of Interactive Distributed Multimedia Systems and Telecommunication

Services (IDMS), Lecture Notes in Computer Science (volume 1905), Springer-Verlag,

pages 266–278, Enschede (The Netherlands).

An Access Control Architecture for Microcellular Wireless IPv6 Networks

S. Schmid, J. Finney, M. Wu, A. Friday, A. Scott and D. Shepherd, November 2001.

In Proceedings of 26th IEEE Conference on Local Computer Networks (LCN), pages

454–463, Tampa (Florida, U.S.).

xiii

Chapter 1

Introduction

1.1 Overview

This introduction sets the stage for the research carried out for this thesis. It introduces

the concept of “active networking” and outlines the general path of research that has

been taken.

An analysis of the evolution of packet switched networks shows that the original static

network architecture was not designed for the requirements of today’s fast moving global

multimedia data network – the Internet. This chapter outlines how the novel paradigm

proposed by active networking could advance the current network and overcome its main

design flaws. A discussion of the applications of active networks and its advantages

highlights the potential beneficiaries of this new technology, namely third-party network

software developers, service providers and most importantly the end users.

This chapter concludes with an overview of the main research challenges that are

targeted by this research effort, followed by an outline of the thesis structure.

1.2 Network Evolution

The Internet was born in the late 1960s. It started as an experimental network to prove

the viability of packet switching [HL98]. In a packet switched network, end nodes (hosts)

communicate with each other by transmission of data units called packets. The packets

are independently routed from the sender to the receiver via the intermediate nodes

(routers) based on the destination address. A family of protocols (for example, the

Internet protocol IP [Pos81b] and the Internet control message protocol ICMP [Pos81a])

define how the individual network nodes communicate (for example, how packets are

formatted, how they are forwarded, etc.).

In the last three decades of its existence, the Internet has grown exponentially into

a huge data network, spanning the whole planet. Especially since the emergence of

1

CHAPTER 1. INTRODUCTION 2

the World Wide Web (in the early 1990’s) and the beginning of the commercialisation

of the Internet (in the mid 1990’s), the growth of the Internet has been beyond any

expectations. It has grown from fewer than 5 million nodes in 1994 to over 100 million

hosts in 2001, and the number of users has already exceeded half a billion.

The key to this success is most likely the simplicity and cheap deployment cost of

Internet technology. Traditionally, routers in packet switched networks have been de-

signed as simple store-and-forwarding devices that included only the minimal processing

necessary for the forwarding of packets. For example, in contrast to traditional circuit

switched networks, which establish a separate channel of fixed bandwidth between the

corresponding users based on a dedicated signalling protocol, packet switched networks

provide only a best-effort service, which tolerates queue overflows (and as a consequence

packet loss) inside the network.

However, the requirements of the original packet switched network architecture have

changed in recent years. These changes can be summarised as follows:

• The Internet has evolved from a pure research platform to a commercially dom-

inated network. As a result, requirements such as network security, efficiency,

and scalability, which were not sufficiently considered in the original design, are

paramount now.

• The use of the Internet has changed from a pure data network towards a mul-

timedia data network. While initially file transfer and remote terminal log-in,

then e-mail, were the primary Internet applications, more and more continuous

or interactive multimedia applications using audio and video have been emerging

recently. Unfortunately, such Quality-of-Service (QoS) sensitive applications have

quite different requirements and therefore benefit from network services that are

richer than simple best-effort packet forwarding.

• The long-lasting success of the Internet is accompanied by the problem that the

network technologies for which the network has been originally designed have be-

come obsolete, and new technologies have been on the increase. For example, more

recent technologies, such as wireless or satellite links, could not have been consid-

ered by the early Internet designers. These technologies have often quite different

transmission characteristics from those of traditional wired links.

• And finally, the continuous performance increase of common computers has reached

a level where it has become economically feasible to deploy off-the-shelf comput-

ers “inside” the network in order to improve network performance (for example,

bandwidth utilisation or security).

CHAPTER 1. INTRODUCTION 3

As the number and complexity of network services is constantly increasing, a recent

trend has been to take advantage of the processing capabilities inside the network. More

and more user or application specific processing is carried out inside the network, where

it is most efficient and effective. The following examples illustrate this tendency:

• Network caching as a mechanism to reduce network load has gained a lot of atten-

tion in recent years [Rac00]. For example, most Internet service providers (ISPs)

offer today large clusters of Web caches at the edges of their service networks1 to

minimise the traffic in the core network. Recent developments further suggest that

content providers should even replicate their content throughout the Internet in

order to reduce network traffic and more importantly access times [Ver02].

• For security purposes it is now common practice for organisations to deploy fire-

walls at the border routers (gateways) to their network service provider. This

enables network administrators to define traffic classes that are allowed to pass the

‘gate’ between a customer’s Intranet and the service provider network.

• The need for qualitatively better communication mechanisms for real-time traffic

(for example, interactive audio and video) than simple best-effort forwarding has

led to the investigation of QoS mechanisms for the Internet. The two relevant

IETF standards – the Differentiated Service (DiffServ) [BBC+98] and the Inte-

grated Service (IntServ) [BCS94] framework – rely on special processing in every

intermediate router along the transmission path.

• Application specific gateways (for example, media gateways that transcode con-

tinuous media in real-time [AMZ95]) and proxies (for example, the anonymizer

Web proxy [MRPH01]), as well as application-layer network support (such as ap-

plication layer routing [GFC00] and multicast [MCH01] protocols) that have been

recently proposed, require processing capabilities inside of the network.

• Further network services and protocols, which rely on computation inside the net-

work that differs from simple packet forwarding, include dynamic address allo-

cation [Dro97], network address translation [EF94], and virtual private networks

[G+00].

This discussion has shown a range of network-side developments and solutions that

augment the current network infrastructure and services. Ongoing efforts in this area

suggest that this trend of incorporating computational elements inside the network is

far from over.
1Although Web caches typically run on standard server hosts (end nodes), from an end user’s point

of view they appear as intermediate nodes that operate inside the network.

CHAPTER 1. INTRODUCTION 4

The majority of these network-side services are implemented as individual ad-hoc

extensions – all with the goal of improving the network design to account for today’s

requirements such as performance, QoS, and security. However, the fundamental prob-

lem, namely that the network provides no architectural support for flexible extensibility,

remains.

This thesis therefore investigates novel active and programmable network mecha-

nisms that consider flexible extensibility through programmability as part of the funda-

mental architectural design. The aim is to provide a uniform interface for adding new

functionality (for example, caching, security, QoS, etc.) to the network infrastructure –

independent of the service at hand.

1.3 Active Networking

Active networking is a recent approach whereby intermediate nodes inside the network

can be involved in the customised processing of control and data traffic. Active network-

ing augments the traditional store-and-forwarding model of packet switched networks

with a programmable element. The resulting store-compute-and-forwarding model en-

ables the processing of data packets on intermediate nodes as they travel through the

network2 (see Figure 1.1). A key characteristic of this technology is the ability to rapidly

create, deploy and manage new network services in response to user demands. The ap-

proach is motivated by both the trend towards network services that perform user-driven

computation at intermediate nodes (see the examples in section 1.2), and the emergence

of mobile code technologies that make network programmability attainable.

Figure 1.1: From Traditional Networking to Active Networking — The evolution of
active networks enables the flexible programming of intermediate network nodes.

Changing the network, from a static entity that can do nothing more than routing

packets from router to router into a dynamically programmable system, opens up a whole

new realm of possibilities: customised data transmissions and application specific net-
2The form of computation is not exactly specified. But, in many cases the goal is to place as few

restrictions on what can be computed as possible.

CHAPTER 1. INTRODUCTION 5

work support are just two examples. The increased flexibility and computational power

inside the network leads also to a whole range of new applications, such as advanced

network management and resource control.

While this may seem, at first, a revolutionary step, it is only a natural evolution.

Today’s network routers already contain a large variety of software components to sup-

port the growing demand of protocols and functions. A typical router, for example,

incorporates software to support several routing protocols, firewalls, network address

translations, virtual private networks and dynamic address allocation to name just a

few. This increasing number of features makes the configuration and management of

network devices more and more complex. In fact, one could argue that configuration

management has become a form of programming. This illustrates that “programmabil-

ity” is inevitable. The question simply becomes what is the best paradigm for network

programming.

A central feature that distinguishes programmable engines from configurable ones is

the programming model. While a configurable engine aims to establish a maximal set

of high-level features that can be programmed (or configured) with a single action, a

programmable engine focuses on identifying a minimal set of primitives (for example,

system calls of host operating systems) from which one can compose (or program) a

broad spectrum of features. Programmable engines provide a much higher degree of

flexibility, which makes them the focal point of interest within most active network

research.

Many different programming models have been suggested. A common approach is to

provide a programmable engine at each intermediate node that can be programmed on a

per-packet basis. Every packet contains in addition to the user payload (data) some form

of active program (code) that is executed on each intermediate node as it traverses the

network. Another major approach is to implement active networks without modifying

the end-to-end protocols (i.e., packet format). In the latter case, active programs, or

in other words any enhanced functionality or value-added services, are loaded onto the

active nodes out-of-band prior to the transmission of data. Active networking approaches

may also differ in various other aspects, such as the programming interface exposed to

the network programmer, the degree of flexibility (i.e., whether code can be installed in

the data path or only the control path), the programming languages, or the policies for

installation of code and resource management.

1.3.1 Why do we need active networks?

Research into active networks is motivated by both user pull and technology push. The

user pull can be perceived in the appearance of network-side services (for example, Web

CHAPTER 1. INTRODUCTION 6

or media caches, firewalls, multicast support, and mobile proxies) as a result of the

changing network requirements (see section 1.2). These examples clearly show the need

for services that reside inside the network.3 The challenge of active network research is

therefore to integrate generic processing elements in today’s network architectures such

that new network services can be implemented in a uniform manner. The programming

interfaces provided by active networks offer a universal means to introduce new func-

tionality into the network. This differs from today’s practice of ’bolting-on’ new network

functionality to the existing architecture in an ad-hoc manner each time a new service

is deployed.

The technology push, by comparison, is driven by the emergence of “active” tech-

nologies such as mobile code. These technologies comprise support for code compilation,

encapsulation, transfer, and safe and efficient execution or interpretation of program

fragments. Today, such mobile code technologies are mainly applied within individual

end systems to provide application extensibility (for example, Web clients execute dy-

namically loaded Java applets) or remote programmability (for example, mobile agent

systems provide a platform for the remote execution of agent programs). The challenge

within active network research is to leverage and extend these technologies for use within

the network.

The main drive behind active network research is the idea of developing commu-

nication networks that exhibit a degree of flexibility and customisability that is only

known from programmable end systems. While the end nodes of today’s networks (i.e.,

user PC’s and workstations) are typically designed as open systems that can be flexi-

bly programmed and hence upgraded with new functionality, intermediate nodes (i.e.,

routers and switches) are still closed, vertically-integrated systems whereby the node

vendor provides both the hardware and software as a complete package. Thus, new

protocols or services can only be tested or deployed when the manufacturer releases a

software upgrade (as third parties cannot speedup the process). The development of

new functionality is typically preceded by a long and awkward standardisation process.

These different paradigms have created an increasing gap between the functions and

capabilities of the users’ end nodes and the intermediate nodes in the network.

Reconsidering the system architecture of those vertically-integrated network nodes

is therefore a crucial step in network evolution. Enabling flexible extensibility through

dynamic programmability, for example, has the potential to speed up the development

and roll-out of multimedia support in the network. It may close the gap between the

capabilities of today’s end systems, which are already fully equipped with multimedia

technologies, and the network, which still lacks basic support for multimedia applica-
3Note that although end users normally do not deliberately demand new services, these services are

developed and deployed in order to satisfy the users’ demands.

CHAPTER 1. INTRODUCTION 7

tions, such as resource reservation, real-time scheduling and multicast capabilities.

1.3.2 Who are the beneficiaries?

The advantages of a highly flexible and extensible network infrastructure are expected

to benefit the networking landscape on various levels.

The fact that active network efforts aim at ‘opening up’ traditionally vertically-

integrated network systems will enable third-party network software developers to com-

pete with established network vendors. Separating the router hardware from the control

software allows third parties to develop and sell network software (for example, router

plug-ins or components) in much the same way as for end systems today. This will create

a new competitive market for network software, services and applications.

For ISPs, the primary benefit of active networking will be the added flexibility that

enables them to react quickly to changing network requirements. For example, it will

allow ISPs to develop, test and roll out new network services in a time frame similar to

those of end system applications and services (i.e., hours or days rather than years). The

speed of service deployment will be especially important in this fast moving marketplace.

In addition, ISPs will also benefit from better network management capabilities and more

control over network resources.

The main beneficiaries of active networks will be the end users. The potential of net-

work customisation on a per-user or per-flow basis (possibly even through user initiated

and/or defined programs) opens a whole new realm of network applications. The wider

range of network services and the faster time-to-market is expected to meet the users

growing demands. At the same time, end users are expected to be the main driving

force behind the progress in active networking and the actual deployment of the new

technology. The market pressure resulting from the rising user demands might be the

catalyst that makes ISPs, network software developers and equipment vendors move to a

network architecture which provides the flexibility that is desired from today’s network.

1.4 Research Challenges

The main aim of this work is to investigate flexible and extensible mechanisms that

enable dynamic introduction of new functionality or value-added services into an oper-

ational network. This endeavour is pursued from the viewpoint of the end user and the

network service provider as both have a great interest in network customisation and/or

the processing of individual flows.

The key challenge of this thesis therefore is to design a novel active router architecture

that provides the basis for flexible extensibility of network functionality. In order to verify

the practicality of this architecture, prototyping an active node according to the new

CHAPTER 1. INTRODUCTION 8

design will be a major part of this undertaking.

The challenges of the architectural design are as follows:

• Generic router platform (not tied to a specific application)

The design goal is to develop a generic programmable router platform to support

the diversity of today’s and future network services. The idea is to replace the

numerous ad hoc approaches to provide specific services inside the network with

a generic means that allows users (such as network administrators or trusted end

users) to extend the network capabilities in a uniform way.

Unlike most existing active router architectures, which are tied to a specific appli-

cation domain (for example, network management or multicasting), the goal here is

to start with a requirement analysis of a wide range of active network applications

and services in order to consider the multitude of requirements in the architectural

design.

• Modular component-based architecture

Another key objective is to design an active router architecture that is truly

component-based – not only the design of the active node, but also the active

processing on the node, taking advantage of component features such as modu-

larity, extensibility, and reusability. The active node can hence be programmed

in units of active code called components, which are dynamically loaded onto the

programmable nodes. These components will typically provide a new service or

simply extend an existing service.

The component architecture allows complex active programs and services to be

split into simple and easy-to-develop functional components. This ‘divide and

conquer’ approach eases the design and development of services. Moreover, it

improves the granularity of service extensibility and reusability of components

among services.

• Fully programmable (not limited by a programming language)

A key advantage of programmable engines (over configurable ones) is that they

can compose a huge spectrum of high-level features from a minimal set of low-level

primitives. The architecture developed in this thesis focuses on the programmable

approach to achieve maximum flexibility. Turing complete programming languages

for the active programming are suggested for the same reason.

Furthermore, programmable engines can be differentiated depending on the pro-

gramming model that is supported. For example, programmability can be sup-

ported on the control or data path of a router or both. The design effort pursed

CHAPTER 1. INTRODUCTION 9

here focuses on full data path programmability. It enables components to be di-

rectly integrated into the packet forwarding path on a node.

• Flexible service composition

The process of creating a service by assembling individual components is referred

to as service composition. A key goal of this node architecture is to provide an

elastic means that enables users to compose flexibly active services. A special focus

is laid on dynamic and co-operative service composition. While the former enables

extensibility of router functionality at run-time (i.e., without having to restart

the node after an extension), the latter is concerned with the problems of feature

interaction and interoperability of components from independent users. This is of

special interest, as current active router architectures have barely addressed the

problem of co-operative service composition among different users. For example,

a congestion control mechanism installed by a network administrator must co-

operate with the custom services loaded by other users (for example, a forward

error control mechanism or a mobile handoff optimisation). Services of different

users should not exclude each other as long they are not mutually exclusive by

nature.

• Configurable security

Safety and security are undoubtedly crucial aspects of the design of programmable

network devices. Most active node architectures secure the nodes by limiting pro-

grammability through the active node design (for example, by forcing users to

use safe code interpreters or programming languages). However, realising security

through restrictions on the programming interface of the active nodes contradicts

the goal of developing a fully programmable active node. Therefore, the architec-

ture proposed here aims at maintaining maximum flexibility through a configurable

policy based security mechanism. In this approach, the node configuration (i.e.,

security policies defined by the node administrator) determines the degree of pro-

grammability – not the architectural design.

• Compatibility and transparency

The introduction of active network technologies in current networks, such as the

Internet, depends largely on how easily they can be integrated with existing tech-

nologies. It is therefore a major objective to design the active router architecture in

a way that enables seamless transitioning towards the novel networking paradigm.

Most early active network proposals, for example, did not consider the transparent

application of active computation a vital requirement, and hence, ended up with

CHAPTER 1. INTRODUCTION 10

solutions that rely on a network consisting only of active nodes or require modifi-

cations on the end systems. Such systems are obviously very hard to introduce in

large networks such as the Internet.4 Consequently, an important goal here is to

design an active router architecture that allows transparent, and hence seamless,

application of active computation on the transmission path. No change to the end

systems and applications, or the intermediate nodes that are not directly involved

should be required. Such transparent solutions have the advantage that a par-

tial transitioning from conventional routers to active nodes – where value-added

functionality and services are most effective – is possible.

• Commercial feasibility

Another important factor for the success of active networking technology is its

commercial viability. Many great technologies have failed in the past simply due

to a weak business model. As a result, this work focuses on a solution that has

evident beneficiaries and a likely commercial perspective.

The challenge is to develop an active router architecture that enables third party

development of network software. Breaking the closed or vertically-integrated sys-

tems design paradigm of current network devices decouples the role of the network

software developer from the hardware vendor and thus opens up a new competitive

market for third party router software. This is particularly promising as unhin-

dered competition typically maximises the cost-performance ratio of products and

services.

1.5 Thesis Structure

This first chapter of the thesis has introduced the concepts of active networking. It

outlines how the new technology has emerged from traditional network technologies as a

result of the growing demands of today’s network users and applications. Furthermore, it

provides the motivation for this line of research along with the main research challenges

of this study. The remainder of this thesis is structured as follows.

Chapter two continues with an introduction of the general background and issues of

active and programmable networks. It defines the basic methodology and introduces the

main concepts. These include different architectural approaches towards network pro-

grammability, various programming models, and other important issues such as service

composition and system integrity.
4Transitioning towards the next generation Internet protocol, IPv6, shows how difficult and long-

winded the process of introducing a new protocol that relies on support throughout the whole network

can be.

CHAPTER 1. INTRODUCTION 11

Chapter three provides a comprehensive overview of the current state-of-the-art in

the field by introducing related work that is or has been under investigation at other

research institutions. A special focus is placed on research into active network systems

design and enabling technologies. Chapter three concludes with an overview of current

work on active network applications and services.

Chapter four continues with a requirements analysis for active network systems.

The requirements are derived from past experiences in active networking at Lancaster

and a thorough study of related work as well as other influencing factors, for example

commercial aspects such as the deployment of new technologies. From these general

requirements a subset of requirements that forms the basis for the design of the LARA++

active router architecture and implementation is drawn.

Chapter five presents the design of the LARA++ active router architecture. This cen-

tral part of the thesis describes in detail how LARA++ operates and how the component-

based active node architecture enables network programmability through flexible inte-

gration and extensibility of network functionality. In addition to the basic node design,

special focus is placed on the following key aspects: the service composition framework,

the safety and security architecture, and the policing scheme.

Chapter six then describes the ongoing implementation efforts of developing pro-

totype nodes of the LARA++ architecture. Due to the considerable extent of the

LARA++ architecture, this chapter focuses primarily on validating the key aspects

of the design through a ‘proof-of-concept’ implementation.

Chapter seven continues with a qualitative and quantitative evaluation of LARA++

and its prototype implementation. It evaluates how the LARA++ architecture satisfies

the objectives and requirements identified in chapter 4 based on a case study and several

example applications.

Finally, chapter seven concludes the thesis by drawing together the main arguments

of this work and summarising the contributions that have been made. It also describes

further work that could be carried out based on this line of research.

Chapter 2

Active and Programmable

Networks

2.1 Overview

This chapter provides a general background on the field of active and programmable

networks. It looks back to the initial developments of this trend in the early 1980’s and

shows how the field has evolved since.

The main focus however is to introduce the core concepts and issues of active network-

ing as a basis for further discussions throughout the thesis. As such, this chapter defines

the basic methodology for active networks and describes various approaches towards

active programmability. Although the idea of active processing inside the network is not

revolutionary (for example, packet routing is also a form of “in network” processing),

dynamic programmability of the network by potentially arbitrary users requires architec-

tural changes to the design and implementation of current network nodes. This chapter

introduces several architectural approaches for the design of active network nodes and

defines various programming models for dynamic network programmability.

Furthermore, the fact that active networks allow end users to program the network

places increased safety and security concerns on such architectures. This chapter exam-

ines solutions within the context of active networks.

2.2 Background

The idea of performing active computation inside the network is not new. The earliest

example of an active network dates back to 1981. Forchheimer and Zander at the Uni-

versity of Linkoping (Sweden) already envisioned a packet-based radio network, called

Softnet [FZ81, ZF83], where every node of the network was programmable. The data-

12

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 13

grams transmitted in Softnet were considered small programs of a multi-threaded dialect

of the FORTH programming language [Bro81].

Although the developers of this early amateur radio network did not use the same

terminology – it was not referred to as “active” or “programmable” network – the key

concept behind Softnet was the same. The nodes of their packet-switched radio network

were programmable by the end users through the insertion of small network programs

into packets which were processed by the nodes along the transmission path.

After that initial work in network programmability, research in the field disappeared

for a long time. Researchers speculate [WGT98] that although the idea was considered

to be very powerful and original, the lack of sophisticated mechanisms for mobile code

and security hindered its acceptance. It can also be argued that the time was not yet

right, as the need for network flexibility and extensibility was not evident in those days.

In the mid-1980s, a very simple form of network programmability was introduced for

the control signalling in circuit switched telephone networks. The Intelligent Network

(IN) marked the first attempt to separate the service logic (signalling protocols and ser-

vices) from the switching system. The new system incorporated service specific “hooks”

into the switching path, which enabled specialised processing of phone calls.

Apart from this distinct effort of the telecommunication industry, there was very little

progress noted of research on network programmability for packet routed data networks

for the rest of the 1980s. It was then in the mid 1990s when the idea of mobile agent

systems arose that research in the field of network programmability was reanimated.

The idea of mobile code that is loaded onto remote nodes in order to “program” the

node is identical to the concepts behind programmable networks. In fact one could argue

that network programmability is simply a subset of agent systems, as the nodes to be

programmed and the computation are mainly restricted to network switches, routers

and gateways, and the application domain of network services.

Finally, in 1994 and 1995 the concept of active networking emerged from discussions

within the DARPA research community on the future directions of networking systems.

In the following years, the new field has attained widespread interest throughout large

parts of the networking community. The continuing funding of active network research

by DARPA from 1996 onwards has had a significant impact on the development of the

new community. For example, in 1997 DARPA funded already close to 30 active network

projects. By 1999 this number has almost doubled.

2.3 Programmable Networks

The main drive behind programmable networks is the idea of developing communication

networks that exhibit a high degree of flexibility, extensibility and customisability.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 14

One of the key features that distinguish programmable networks from current config-

urable ones is the interface. While configurable architectures concentrate on establishing

a maximal set of high-level features that can be configured through single atomic actions,

programmable systems aim to identify a minimal set of primitives from which one can

compose a large number of high-level features.

The aim is to make communication networks programmable to a degree that is known

from programmable end-systems. It is expected that such a degree of programmability

has the potential to close the gap between the capabilities of today’s end systems and

the network. While the former are already fully equipped with multimedia technologies,

the latter still lack basic support for multimedia streaming, such as QoS and multicast.

However, programmability is a very generic term allowing many different interpre-

tations and approaches. Likewise, network programmability has several facets. It en-

compasses already three fundamental approaches, namely Active Networks, Intelligent

Networks and Open Signalling. Figure 2.1 illustrates these inherently different method-

ologies.

Figure 2.1: A Comparison of Programmable Network Approaches

2.3.1 Active Networks

Active networking is a new networking paradigm for data networks whereby the focus

changes from pure packet forwarding to dynamic programming of the network nodes.

Programmability is enabled through the exposure of a programming interface. It al-

lows users (for example, network administrators, privileged users, or even end users) to

dynamically modify the network behaviour and introduce new network functionality.

The scope of network programmability varies from control plane to data plane pro-

grammability and extends from very limited to highly flexible forms (depending on the

programming interface). The ultimate objective in this respect, namely to have a general-

purpose processing engine at each network node that can be flexibly programmed on a

per-packet basis, however, is far from reality. The performance and security constraints

of current networks and the lack of sufficient processing power inside the network make

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 15

this still a faint vision. Instead, current active network approaches have to balance the

trade-offs between flexibility, security, and performance.

More than other programmable networks areas, active networks emphasise the need

for mobile code and dynamic loading mechanisms to achieve on-the-fly programmability.

2.3.2 Intelligent Networks

The main objectives behind Intelligent Networks (IN) are similar to the aims of active

networks, namely to provide a flexible extension mechanism (i.e., a programming in-

terface) to speed up the deployment of new network services. It is mainly the target

domain that is different. Intelligent networks focus on the introduction of value-added

services other than basic telephony into the Public Switched Telecommunication Net-

work (PSTN), rather than general data networks.

Intelligent networks use the Signalling System No. 7 (SS7) to incorporate service

specific “hooks” into the switching path, such that enhanced processing of a phone call

can be transferred to a Service Control Point (SCP) outside the switching fabric. The

SCPs provide specific functionality, for example an enhanced service (such as local-call-

rate or toll-free numbers).

While in the intelligent network an SCP could only provide a single advanced service,

this restriction was lifted through the introduction of the Advanced Intelligent Network

(AIN). It supports multi-service capable SCPs that enable the selection of a whole range

of services via a 3-digit number. The same concepts have also been applied to the wireless

telephone network in the form of the Wireless Intelligent Networks (WIN).

The intelligent network approach to providing extensibility of functionality inside the

network corresponds to an active network architecture in which value-added services are

executed on a nearby active server (or grid of servers).1

Despite the conceptual similarities to active networks, intelligent networks support

only a very limited form of “programmability”. The main restriction results from the

fact that flexibility is only provided on the control path. Moreover, intelligent networks

usually limit network programmability to rather coarse-grain and long-term services as

service creation involves complex procedures.

2.3.3 Open Signalling

The open signalling community has been working on the standardisation of a flexible

interface for the control plane of circuit switched data networks. Unlike the intelligent

network, open signalling is not tied to a specific service domain such as telephony. The
1An example of such an active network architecture is the Alpine framework developed at Lancaster

University [Ban01].

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 16

goal is to support a generic programming interface to network switches.

The idea behind open signalling is to define an abstraction from the physical network

device in order to provide a switch independent interface between the switch controller

and the switch fabric. This decoupling allows switch controllers and fabrics to be devel-

oped and evolved independently. The abstraction of a virtual switch and the exposure

of programming interfaces enables third party software developers to build specialised or

customised control architectures, while at the same time switch vendors improve their

switching capabilities. This separation between the network hardware and the control

algorithms is referred to as virtualisation.

The broadband kernel xbind [CHLL96] developed at Columbia University is a prime

example of an open signalling architecture. The xbind service architecture is based on a

distributed component based programming paradigm that allows modular construction

of multimedia services. It includes components to implement mechanisms for distributed

resource allocation, broadband signalling, and switch control and management.

Another example is the Tempest [VRLC97] framework developed at Cambridge Uni-

versity. It provides a flexible architecture that supports several independent control

architectures on a single switch. These control architectures, called switchlets, can be

safely installed on an operational ATM switch. The Tempest also supports refinement

of services at a finer level of granularity through control plane modifications, called con-

nection closures. In this case modification of services can be performed at an application

specific level.

P.1520 [B+98] is an ongoing effort within the IEEE community to provide a reference

model for open signalling (see Figure 2.2). The model identifies the key layers of the

networking design space and illustrates the process of virtualisation. It defines clear

interfaces between the various functional layers.

Applications invoking methods on objects below

Differentiated
Service

Scheduling

Routing
Algorithms

RSVP or other
per flow
control

Software representation of routing resources

Hardware and other resources

ControllerPhysical Elements

(Hardware)

Virtual Network Device

(Software representation)

Routing algorithms,

connection management,

and directory services

Algorithms for value added

communication services

Users

V -

Interface

U -

Interface

L -

Interface

CCM -

Interface

Figure 2.2: The P.1520 Reference Model for Open Signalling

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 17

Despite the flexibility gained through open signalling, its limitations are apparent:

the flexibility is restricted to the control plane and targeted towards circuit switched

data networks only. Furthermore, open signalling mechanisms support switch control

only on the granularity of connection, not packets. Finally, open signalling does not

envision control implementations being uploaded onto a switch (or removed) in a highly

dynamic manner.

2.4 Active Network Methodology

As a result of the initial DARPA-funded research program for active networking [DAR98],

an informal working group has been formed to define the scope and fundamental tenets

of active networking along with an architectural framework [ANW98b].

According to this, an active network consists of a set of active nodes that are con-

nected by a variety of network technologies. Each active node runs an operating system,

responsible for managing the node’s resources, and one or more execution environments.

Each execution environment implements a virtual machine that processes the delivered

active packets. An execution environment may provide general (or Turing-complete)

computational services or simply a forwarding engine whose computation is controlled

by the packet data.

Although this definition of an active network is very general, it can be argued that

certain assumptions regarding the active node architecture are unnecessarily limiting.

For example, assuming execution environments, or more specifically virtual machines

that are tailored towards the processing of “active” packets (which comprise the code

or simply a code reference as part of the data) or the explicit mapping between active

packets and their execution environment, restricts the design space unnecessarily. As a

consequence, this work proposes a more extensible active node architecture that does

not limit “active computation” to code provided as part of the data packets and releases

the explicit bonds between the data packets and the execution environments.

Besides the debatable definition of an active network, the DARPA-funded research

community has agreed upon several fundamental tenets and objectives for active net-

works [ANW98b]:

Network API enables programmability: An active network must expose some

form of application programming interface (API), referred to as the network API,

to a group of or all network users (for example, administrators, service providers,

and/or end users). The network API enables user’s to “program” the network or

individual nodes on a running network in order to achieve one or all of the following:

deployment of new services, introduction of extended functionality into network

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 18

nodes, customisation of services for different applications, experimentation with

new services.

Communication dominates over computation: The primary function of the ac-

tive network remains as communication, not computation. Although computation

services within the network are one of the main contributions of active networking,

the active network platform is not designed to be a general-purpose distributed

computing system.

Network packets are the data units for computation: The central data unit

within active network computation is the network packet. The data packets are

also the primary units multiplexed in the network as opposed to any higher-level

entities such as circuits.

Minimal assumptions on underlying technology: The assumptions on the under-

lying packet-forwarding technology must be minimised, since active nodes might

be interconnected by a variety of services that evolve over time.

Independent node administration: Active nodes need to be considered as inde-

pendent administration units rather than units that are controlled by a common

administration. The amount of global agreement required should be kept minimal.

The partitioning of administration results in the need of explicit trust relationships

between individual units.

Scaling to global active networks: The active network architecture must consider

scalability issues and provision for very large global active networks. Appropriate

management tools to administrate the overall network must be included.

Ensuring security and robustness of active nodes: Node-local and network-

wide mechanisms to ensure security and robustness of the active network must

be provided. Robustness should be considered independent of security, so that

even the consequences of authorised actions are limited in scope. For example, an

inadvertently defective active program should not cause any harm.

2.4.1 Taxonomy

Since the early days of active network research back in 1995, the field was divided

into two different evolutions towards network programmability, namely the active packet

approach and the active extension approach.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 19

2.4.1.1 Active Packets vs. Active Extensions

The active packet approach supports network programmability on the granularity of

individual data packet. Traditional or genuine data packets are replaced by so-called

active capsules that carry the processing instructions (active programs) to be executed

on their behalf. The program is processed by all network nodes along its transmission

path that support the corresponding programming language. As a result of the active

processing the packet payload, the forwarding behaviour (for example, packet scheduling

or routing), or the state on the evaluating node may change. Once the packet execution

has completed, or in other words, when the packet has been forwarded to the next hop,

the active process on the node terminates and the resources of the active process (i.e.,

memory, CPU, bandwidth) may be released. Since the active code is distributed in-

band with the data traffic and executed as the individual code packets pass the node,

this approach is also referred to as an integrated approach to active networks [TSS+97].

The first active network approach leveraging this programming paradigm has been

developed within the ANTS project [TW96, WGT98] at MIT in 1996. The main idea

involved the development of a common communication model (as opposed to a spe-

cial communication protocol) that enables dynamic and automated deployment of new

network protocols.

By contrast, the second approach enables network programmability based on the

so-called active extensions. Active extensions are active programs that are dynamically

loaded and installed on network nodes to modify the behaviour of that node or in other

words to enhance the functionality of the node. When executed on a node, active

extensions provide extended services to the data streams passing through the node and

other active extensions. They generally have a long-term impact that exceeds the lifetime

of a packet by far. As active extensions are not tied to a particular data stream (i.e., they

are loaded out-of-band), they can potentially be applied to multiple or all data streams.

This enables active extensions to enrich functionality in a transparent manner. Due to

the out-of-band distribution of active code and the separation of active extensions from

the data packet, this approach is also referred to as a discrete approach [TSS+97].

The first active router architecture based on the concepts of active extensions has

been developed at the University of Pennsylvania for the SwitchWare project [SFG+96,

AAH+98]. The base layer of the programmable node (or switch) architecture supports

extensibility based on active extensions, referred to as switchlets2. The motivation for

this programming paradigm has been to enable flexible extensibility of a router’s core

functionality based on a system-level programming interface.
2Note that this term is also used within the open signalling approach Tempest (see section 2.3.3),

but in a different context.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 20

SwitchWare is also a good example of an effort that tries to integrate both approaches

into a single active network architecture by combining the results of several projects. The

active packet language PLAN [HK99] developed for SwitchWare allows the invocation

and sequential composition of active extensions. For example, routing tables maintained

by a switchlet (active extension) can be queried by PLAN programs (active packets)

trying to find a path through the network.

2.4.1.2 Further Terminologies

Apart from those two fundamental categories of active network systems, active network

architectures can also be classified according to the following characteristics:

• Which OSI reference model layers are involved in the active computation?

Active network systems typically consider processing of the whole packet, or in

other words all the protocol layers of a packet may be involved in the active pro-

cessing – despite the restrictions imposed by the OSI reference model [ISO84] (see

section 2.4.2 for further details). This is underlined by the fact that even the very

first active network systems have assumed transcoding of media streams (which

involves processing of application-layer data inside the network) a “lead user” ap-

plication [TSS+97]. Hence, there is no need to explicitly define the OSI layer

associated with the data processing.

However, if an active node restricts active computations to a specific OSI layer

(for example, transport-layer), the active network solution might be referred to as

such (for example, layer-4 active networking).

• How are packets associated with active extensions or active packets assigned to the

appropriate execution environment?

A packet classification mechanism, which is typically implemented as part of the

active node operating system, is required to associate data packets (or active pack-

ets) passing an active node with the appropriate active extensions (or execution

environment respectively). For this reason, the classifier uses either explicit tags

and/or packet headers as part of the actual packet data (for example, ANEP3).

Alternatively, a more generic mechanism that allows classification on arbitrary

packet data may be employed. In the latter case, packets can be transparently

classified and assigned to active computations – without the need of explicit tag-

ging. Hence active computation can be applied in a totally transparent manner

without involvement of the end nodes.
3The active network encapsulation protocol (ANEP) [A+97] has been proposed as a means to assign

packets passing a network node to active computations.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 21

• Where does the active computation take place?

Active network nodes are typically built on top of existing router platforms. In the

case of a router platform built on a commodity OS, active processing can either be

performed in protected mode (user-space) or system mode (kernel-space). System-

level active network implementations on the one hand benefit from the flexibility

of kernel space privileges (i.e., low-level data structures and system resources can

be directly accessed), whereas user-level implementations on the other hand are

typically more restrictive in terms of what can be processed and how efficiently.

Most important however is the fact that system-level implementations of an active

node (inclusive those that implement at least the packet capture and injection at

the system-level) have the advantage that all types of active computations (i.e., in-

tegrated or discrete, and explicit or transparent processing) are supported, whereas

a pure user-level implementation of an active node is limited to an overlay active

network solution. The data must be explicitly addressed to the user-space appli-

cation that hosts the active network implementation. System-level active network

implementations, by contrast, enable layer-3 or native network data processing.

Thus active computation can be transparently applied on the data packets passing

through the node.

Table 2.1 summarises the basic operational modes of the different types of active

network approaches and outlines their limitations.

explicit processing transparent processing

integrated approach

native native network-layer protocol
takes care of active packet
routing

n/a (in-band active code is
explicitly bound to execu-
tion environment)

overlay active packets are directly
sent (addressed) to active
nodes

n/a (packets are explicitly
addressed to the overlay)

discrete approach

native packet tag or special header
determines active exten-
sion(s) to be involved

classifier determines active
extension(s) based on ar-
bitrary packet data

overlay packets are directly sent to
active node; explicit identifier
(packet tag or header) deter-
mines active service(s)

n/a (packets are explicitly
addressed to the overlay)

Table 2.1: Summary of Basic Operational Modes for Active Network Approaches

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 22

What is not shown in this table are the dependencies arising from the different im-

plementation approaches: kernel vs. user-space. Since transparent processing of the

network data requires some form of kernel-space hook in order to access the network

traffic in an efficient manner4, a pure user-space implementation would not be rational.

The same is true for explicit processing of network data in a native active network en-

vironment. Without a kernel-space implementation of the packet classifier that filters

out the packets that are explicitly tagged for active processing, again all network traffic

would have to be passed into user-space. However, for overlay active network solutions,

where each active node has to explicitly address the next-hop node as part of the tun-

nelling mechanism, the advantages of a user-space implementation (for example, ease of

development) outweigh the benefits of a kernel-space implementation.

2.4.2 Architectural Consideration

As active processing of data packets inside the network potentially changes the semantics

of the network (for example, the routers can take on a very different role in an active

network) which may have an adverse effect on end-to-end semantics, a discussion of these

issues is included here.

Network communication is usually expressed in terms of the layered abstractions of

the OSI Reference Model [ISO84]. The network layer (layer 3) provides support for trans-

mission of packet data between end systems. It hides the lower-level network complexity

(i.e., link layer data protocols and physical transmission of the data) from the transport

layer (layer 4) and above. According to the OSI model, network routers are explicitly

constrained to layer 3 processing as the transport-layer (or higher layers) provides end-

to-end services, which are by definition the domain of end systems. Unfortunately, the

implications for active networks would be that active computations inside the network

are restricted to data concerning layer 3 (i.e., the IP header) and below.

Another well-established theory, known as end-to-end arguments [SRC84], comes to

the same conclusion. The end-to-end arguments are a class of system design principles

that impose a structure on the placement of function within a system. They provide a

rationale for moving functionality upwards in a layered system, towards the applications.

For example, a communication subsystem shared by applications with diverse needs

should not provide functionality that is best implemented by the individual applications.

Consequently, the end-to-end arguments also preclude the implementation of higher-level

functionality inside the communication subsystem.

The rationale for this school of thought is based on the assumption that network
4Note that accessing the network traffic from a user-space application through a “raw socket” type

interface would result in poor performance, as all the traffic would have to be passed into user-space just

to see whether or not some form of active computation should take place.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 23

nodes need to be very simple and very fast. However, these presumptions have changed

due to the continuous increase of computational power and the advent of active and

programmable network technologies (for example, specialised network processors). In

contradiction to the end-to-end arguments, there are many situations where applying

these principles is counterproductive. For example, many-to-many communications can

be done by forwarding packets among multicast servers located outside the network, but

it appears to be much less effective than providing multicast functionality at the network

layer.

Likewise, there are many examples that show that active computation of transport

layer or even payload information “inside the network” can significantly improve data

communication between end-systems. Many applications, for example, place a large

part of the functionality inside the network. Examples of such applications are: packet

filters or firewalls, data caches, proxies, and congestion control or QoS mechanisms.

And clearly, functionality that logically needs to be processed inside the network is best

implemented and provided within the network. Moreover, there are other applications

for which the performance or simply the design and implementation can be improved by

coupling network-level processing with per-user or application-specific information. An

example of this category is the mobile handoff optimisation described in chapter 7.

In conclusion, active networks do not contradict the end-to-end arguments. Instead,

the design principles of the end-to-end arguments can facilitate the design conversation

that leads to a more flexible and scalable architecture. For example, active network

interfaces should be carefully designed such that only applications benefiting from spe-

cific functionality in the network are subject to the additional costs (for example, lower

throughput or extra latency as a result of active processing).

As the desired level of computation within an active network node varies largely

from one active application to another, all OSI layers above the the link layer should be

accessible by active processes. Figure 2.3 illustrates how the difference between tradi-

tional network nodes (i.e., end-nodes and routers) and active nodes might be reflected

in the OSI model. The marked areas (blue) indicate the OSI layers comprised by active

processing within routers and end-nodes.

Figure 2.3 also suggests that active network architectures should be engineered in a

vertical manner, whereby the network subsystem (protocol stack) above the link layer

is collapsed into a single subsystem. The main purpose of the OSI layer model in this

context is therefore to express the semantics of active computation on the various layers,

rather than to direct the implementation of an active node.

On active end systems data traffic is typically also processed by the conventional

protocol stack in order to provide the end-point functionality for network communica-

tions.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 24

Link Layer

Physical Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

End Node Router Active End NodeActive Router

cut-through
processing

layered
processing

Figure 2.3: How active routers and end-nodes fit in the OSI reference model.

2.5 Architectural Overview of Active Nodes

This section provides an overview of the active node architecture defined by the DARPA

Active Network Working Group (ANWG). The architecture is documented in a working

group draft called “Architectural Framework for Active Networks” [ANW98b]. Although

this architectural framework considers only one part of the design space for active net-

working (namely the integrated approach), it is considered by many to be a de-facto

standard. The most likely reason for this misconception is the fact that the DARPA-

funded ANWG, who has always focused on the active packet approach to active networks,

has been the only formal working group in this area so far.

The proposed framework defines the fundamental components of an active node and

how they interoperate. Figure 2.4 illustrates the architectural design.

Figure 2.4: The Active Node Architecture according to the DARPA ANWG

One of the key design decisions of the architecture is that active nodes should not be

restricted to a particular network programming interface or a fixed set of abstraction,

but rather enable extensibility. For example, the architecture suggests allowing multiple

active network programming interfaces to co-operate simultaneously on a single node.

As illustrated in Figure 2.4, functionality is divided into the active node operating

system (NodeOS) and the execution environments (EEs). While the NodeOS manages

and controls access to node local resources and system configurations, the EEs implement

the active network APIs supported by the node.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 25

2.5.1 Active Node OS

The NodeOS manages the physical resources (i.e., processor, network bandwidth, mem-

ory, etc.) of the active node and provides a basic set of abstractions for the EEs to

implement an active network programming interface. These abstractions primarily in-

clude support for internal communication channels (required for passing packets between

internal components), controlled access to node-local resources, and support for common

services (for example, security policing and routing).

The internal communication channels can be either anchored within an EE or cut-

through. Anchored channels are used to transfer packets between the EE and the un-

derlying communication interface. Cut-through channels, by comparison, are used for

packets forwarded through the active node without being processed by an EE. Channels

are created during initialisation of EEs by specifying a set of attributes. These attributes

include the modules that define the behaviour of the channel, as well as other properties

such as addresses, direction of packet flows, MTU, and QoS requirements. In addition

to the channel attributes, the EE needs to specify the packet filter(s) for the classifier.

An important task of the NodeOS is to schedule the communication channels and EEs

for execution. The scheduling decision depends on both the computational requirements

of the channels and the corresponding EEs, and the bandwidth requirements of the

channels.

2.5.1.1 NodeOS Interface

In order to promote the wide deployment of active networks, the active network working

group tried to identify a “common” interface between the NodeOS and the EEs. The

results of this study have led to the specification of a “standard” NodeOS interface

[ANW99].

The interface specification is influenced by the following underlying design principles:

• The common interface should be minimal, but extensible beyond the fixed point

through the enclosure of special functionality provided by the underlying system

and hardware.

• In accordance with the tenets of active networking, the interface is optimised to-

wards packet forwarding rather than arbitrary computation.

• Functionality and mechanisms required for the active node interface that are not

particularly unique to active networks are borrowed from an established interface.

The interface specification is therefore designed in compliance with POSIX.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 26

2.5.2 Execution Environments

The execution environments provide computational services (for example, a virtual ma-

chine or code interpreter) for active packets. Based on these active packets, or more

precisely through the active code included within the active packets, users are able to

control or program the active node and its forwarding behaviour.

Upon receipt of an active packet, a packet classifier identifies the matching EE and

hands the data packet to the appropriate EE for execution. The execution of the active

code instructions will normally alter one or more of the following: the packet content,

the internal state of the EE and/or the operation of the active node. The function of the

active code is not defined by the architecture and hence depends entirely on the provider

of the EE and the developer of the active program. After the active code execution has

been completed, the EE forwards the (altered) packet, sends one or multiple copies of

the packet or simply drops the packet.

The EEs according to the DARPA active node architecture are considered to be en-

tirely independent of each other and hence do no support any form of inter-EE communi-

cation and operation beyond the default communication interface (i.e., packet channels).

In order to enable network users to use an EE for the provisioning of active services,

they must obtain the programming guide (i.e., specification) for the EE. Therefore,

EEs require publicly available documentation on how to program active nodes (i.e., the

specification of the programming interface exposed by the EE) and a description of the

packet filter (for example, the ANEP packet identifier) that must be included in the

active packets when addressing the EE.

Finally, the DARPA active node architecture does not encompass mechanisms for

dynamic integration of EEs on an active node. It is left to the NodeOS implementation

to decide whether or not such mechanisms are supported.

2.5.3 Summary

Although the DARPA active node architecture described in this section is widely re-

spected and often considered to be the de-facto standard for active networks, the ar-

chitecture is only partially useful, as it is largely tailored towards the active packet

approach to active networking. The active extension approach to active networking is

simply disregarded. As a result, the architecture restricts active programmability to the

functionality provided by the programming interface of the high-level EE(s) available at

a node and not beyond that. It will be shown throughout this thesis that the architecture

lacks further important features, such as a transparent means to apply active computa-

tion to data streams of conventional applications and a flexible composition framework

to ensure interoperability between active services.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 27

2.6 Programming Models

This section describes in more general terms the various programming models that have

been discussed in the context of active programmability. These programming models can

be classified according to the code distribution mechanism and the program encoding

used for active programs.

2.6.1 Program Distribution

Two fundamentally different models of program distribution have evolved during recent

years of active network research. Active programs can be distributed either in an in-band

or out-of-band fashion.

2.6.1.1 In-band Approach

The idea of in-band active code distribution has been pioneered by the ANTS project at

MIT [TW96]. Their proposed communication model replaces traditional data messages

with small programs, called active capsules. Since these capsules manage the payload

simply as a data structure, the differentiation between packet headers and payload be-

comes superfluous.

In-band active code distribution typically used in conjunction with active packets

(integrated approach) has several interesting implications for packet-switched data net-

works: First, as the routes through the network are generally not fixed within such

networks, packets of a stream can follow potentially different routes. Therefore, to en-

sure that active programs are processed by every intermediate node along transmission

path, the active code must be included in every data packet of a stream – not only the

first packet. Second, active programs are limited in size5 in order to sustain efficient

use of the network bandwidth. These limitations clearly have an adverse impact on the

capabilities (and hence the usefulness) of the active computations.

In general, however, in-band active code distribution is considered more universal

than the active packet approach. It only requires that active code is delivered as part of

the actual data stream, rather than through a separate control stream.

2.6.1.2 Out-of-band Approach

Out-of-band distribution of active code, which is typically used for loading active ex-

tensions in discrete active network approaches, allows users to dynamically upgrade the

functionality of the router or to customise its behaviour. Once downloaded and installed,

the active programs (or extensions) take part in the subsequent processing of the data
5The programs should be small enough so that appropriate space remains for the payload.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 28

streams on the router. This approach has been initially developed and deployed as part

of the programmable switch project at UPenn [AAH+98].

The mechanism for processing data packets passing through a node is here archi-

tecturally separated from the task of injecting active programs into a node. Users (or

programmers) of the active network must first inject their programs into the network de-

vices before the data streams can benefit from the extended functionality. Consequently,

the packet format and transmission mechanisms for the actual data streams remain typ-

ically the same; no alteration of the packet type or header is required. The active

programs involved in the processing of a data packet are usually determined through

packet classification (based on the packet content – headers and payload).

On the one hand, the shortcomings of this approach are clear. The initial distribu-

tion of the active code must be explicitly performed before the data streams can take

advantage of the new functionality. This may raise the problem that additional latency

for loading the code is introduced when immediate programming of the active network

is an issue. On the other hand, the separation of active code injection and program

execution is advantageous if (1) high-level security checks need to be passed before a

program can be executed on a node, or (2) active programs are relatively large in size.

In both cases, code injection and loading on a per-packet basis cannot be performed

efficiently.

2.6.1.3 Combination of In-band and Out-of-band Approach

The previously described program distribution approaches, namely the in-band and out-

of-band approaches, define two distinct mechanisms for program distribution. However,

since these approaches are complementary, many intermediate solutions have been de-

veloped over the years.

A technique that is commonly applied is to replace the code within the active packets

with a code reference. Thus, upon receipt of such a packet, the active node loads the

respective function from a local code store (i.e., cache). If the code is not available locally,

it will be fetched from a remote location via an out-of-band loading mechanism. While

both in-band and out-of-band code distribution are explicit loading mechanisms, this

approach is referred to as an implicit or on-demand loading mechanism. It is triggered

by a “program fault” (similar concept to a page fault in the context of virtual memory

management) that occurs when the execution of a program, which is not yet loaded, is

scheduled.

The main advantage of this approach is that the active code is only transmitted

and loaded once on every active node. All subsequent packets can reuse the code with-

out incurring additional network load (or processing load to instantiate the program).

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 29

Furthermore, this approach allows optimised code to be loaded upon a function miss.

For example, active routers could specify their local environment (i.e., hardware plat-

form and/or execution environments) when retrieving the active code from a remote

server in order to load the best suited program version. Moreover, this approach has

the advantage that vendors and network administrators can control the active program

distribution (for example, loading can be restricted to trusted servers only). This allows,

for example, active programs to be checked for errors and/or security problems prior to

the loading and instantiation of the code. Offloading these time-intensive tasks has the

potential to reduce the bootstrapping time of active programs significantly.

Further variations of program distribution mechanisms that are specific to individual

research projects are outlined where appropriate in chapter 3.

2.6.2 Program Encoding

This section introduces various program encoding schemes that have been used for pro-

gram encoding within active network research over the past few years. In particular, the

encoding types for interpreted, intermediate, binary, source and self-specialising pro-

grams are discussed here. The study identifies their strengths and weaknesses in the

context of active programmability and program distribution.

2.6.2.1 Interpreted Code

This category of active program encoding encompasses all interpreted programming

languages that are used for active programmability, such as Safe-Tcl [Bor94] or NetScript

[YdS96].

Interpreted programming languages have the advantage that safe processing of mo-

bile code is easy to accomplish. Since the code must be interpreted (i.e., it cannot be

executed outside the interpreter), safety is only a matter for the interpreter; and thus,

the programming environment is safe as long as the interpreter is safe. Another key ob-

jective of interpreted code is platform independence. The high-level code representation

is entirely independent from any platform specifics and therefore it is merely a matter of

porting the interpreters to a specific platform in order to achieve platform independence.

The main drawback of interpreted code is the cost of processing involved with code

interpretation (which typically is significantly higher than the cost of binary code ex-

ecution). A secondary disadvantage of this program encoding in the context of active

networks is the size of the code representation. Source code typically is significantly

larger in size than for example binary code. However, the code size of interpreted code

can be largely reduced through code compression at the expense of extra processing.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 30

2.6.2.2 Intermediate Code

Intermediate code is probably the most commonly used encoding type for active pro-

grams. A very popular intermediate programming language used within active networks

is Java [GM95, JAV]. Another example is the ML derivative Caml [CAM] used within

SwitchWare.

Intermediate code, also referred to as bytecode, is produced through program com-

pilation. Since intermediate code was mainly designed as a platform independent code

representation, it is especially suitable for mobile programs. The mobile code is “inter-

preted” by a bytecode specific virtual machine on the target machine where the code is

executed. As a consequence, safety of intermediate code systems relies entirely on the

safe interpretation of the bytecode by a trusted virtual machine [Gos95].

Interpretation of intermediate code is typically significantly faster compared to in-

terpreted code, because bytecode is already highly optimised towards fast interpretation

through a platform specific virtual machine. However, since the virtual machine must

still map the bytecode onto machine code at execution time, the performance of inter-

mediate code interpretation is still considerably slower than binary code execution. In

order to optimise the performance of intermediate code, many intermediate languages

off-load the responsibility for operand validation from execution time to compile time.

As a result, intermediate code is typically based on type-safe programming languages.

2.6.2.3 Binary Code

Active programs, directly compiled to platform-dependent binary code, have the best

possible performance characteristics as the code is directly executed by the processor(s)

of the target machine. However, in comparison to other encoding approaches, this

is most challenging with respect to safety of active nodes. Since binary or machine

programs “run” directly on the underlying hardware, sophisticated safety and/or security

mechanisms are required to protect the active nodes from malicious active programs.

Safety with respect to protection from malicious active code and users can be simply

achieved through conventional security mechanisms. Namely code signatures and user

authentication techniques can be used to ensure that active code is not tampered with

and users are authorised to execute a program. However, these security mechanisms

rely on external trust relationships which make these measures typically less safe than

node-local enforcement techniques. Furthermore, code safety with respect to robustness

of an active node should be independent of security, so that the consequences of the

actions of even the most-trusted users are bounded.

Binary code execution therefore requires system-level safety measures such as mem-

ory protection and fair scheduling of processing resources. These measures either verify

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 31

statically (at compile time) whether a program conforms to the safety regulations or

enforce safety dynamically (at run time). While static or compile time measures can be

more efficient with respect to run-time performance, run-time measures typically provide

the highest-degree of safety6. The performance disadvantage of run-time safety is typi-

cally minimised through dedicated hardware support (i.e., virtual memory management

and pre-emptive multi-tasking) available in most modern processor architectures.

For example, the Omniware mobile object-code architecture [ATLLW96] uses a mech-

anism called software-based fault isolation (SFI). It enforces a set of rules for instructions

(for example, restrictions on how address arithmetic is performed) that are used to define

a “sandbox” within which a program can do anything, but not escape. While Omniware

comprises a special execution environment in order to enforce the sandbox at run-time,

it has been shown that “rule compliance” of object-code can also be verified on the target

machine before execution takes place by means of new techniques referred to as proof

carrying code (PCC) [Nec97, Nec98] (for further details see also section 2.8.1.2).

The SPIN project7 [BCE+94], by comparison, suggests the use of trustworthy com-

pilers for mobile code generation. Herein, compilers are responsible for verifying that

programs do not access any data outside their authorisation scope. Before a binary pro-

gram is executed on a target machine, the active node must confirm that the compiler

used to generate the binary code can be trusted.

2.6.2.4 Source Code

This approach suggests the distribution of active programs in the form of source code.

The active nodes use a just-in-time compiler for “on-the-fly” compilation of active pro-

grams arriving at a node. As a consequence, source code encoding is not suitable for

active packet based approaches, because additional latency resulting from the source

compilation would occur on a per-packet basis. However, for discrete active network

approaches, where active programs are loaded only once at the beginning, the delay

caused by on-the-fly compilation of active source code is less critical.

Despite the need for an “on-the-fly” compilation mechanism, the distribution of

active code in the form of source code has several valuable advantages:

• Source code is platform independent. Given that a compiler for the target plat-

form is available and that any architectural differences (for example, byte order

or memory alignment) have been considered by the programmer, the same active

code fragment can be used across different active node platform.

• Safety techniques prior to compilation and compiler-based safety checks (for ex-
6Note, safety is enforced even in the case of an unexpected program failure.
7See also section 3.3.1.5 for further information on the SPIN operating system.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 32

ample, type safety or range checking) can be applied on the target system.

• No external trust relationships are required as the compiler is part of the local

system.

• On-the-fly compilation on the target machine allows the active node to customise

the compilation (for example, to account for platform dependent optimisations).

The recently developed programming language ‘C [EHK96] is an example of a safe

on-the-fly compiler.

2.6.2.5 Self-specialising Code

Program specialisation is a technique that optimises a program with respect to the con-

text in which the program is executed [JGS93]. This technique is used to generate

mobile code that runs “anywhere”. Instead of writing and maintaining a different pro-

gram for every context in which the program may be executed, there is only one version

of the code that adapts itself to the respective execution context. The concept be-

hind self-specialising code is to transmit code transformations that enable it to generate

customised code and types, rather than transmitting regular code.

A self-specialising code generator developed at the University of Pennsylvania [Hor00]

has been designed with the objective of combining the concepts of program specialisation

and program verification. Previously developed type systems [LL94, TS97, WLP98] can

be used to provide safety guarantees for the self-specialising programs (for example, all

generated code must be well-formed). Another technique considered for use in conjunc-

tion with certifying compilers is the verification of type-safety before program execution,

but after the code is compiled [MDCG99].

2.6.2.6 Summary

The various program encoding schemes introduced in this section have different char-

acteristics with respect to mobility, safety, programmability and performance. Table

2.2 compares the different code representations and evaluates their suitability for active

network environments.

Each approach has its strengths and weaknesses: interpreted languages facilitate the

implementation of safe execution environments for active code; intermediate encoding

is largely platform independent and at the same time modest in performance; binary

programs are preferable for computationally expensive or frequently used modules due

to their superior performance; source code based mobile code overcomes the portability

problem of binary programs, but at the expense of just-in-time compilation upon code

arrival (which limits its usability to discrete approaches). Finally self-specialising code

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 33

Code Representation Mobility Safety Programmability
(Flexibility)

Performance

Interpreted Code Yes Simple Limited Slow

Intermediate Code Yes Not hard Good Medium

Binary Code No Hard Complete Very Fast

Source Code Yes Not hard Complete Very Fast, but
compilation re-
quired

Self-specialising
Code

Yes Simple Good Very Fast, but
“specialisation”
required

Table 2.2: Comparison of Encoding Techniques (with respect to their qualities for mo-

bility, safety and efficiency)

achieves mobility, safety and high performance through dynamic code specialisation at

loading time.

2.7 Service Composition

Active node architectures that support sequential processing of multiple active programs

in the data path (which is an obvious prerequisite for flexible and extensible architec-

tures) must address the issues of service composition. A special working group has

evolved within the DARPA active network program with the goal to investigate and

standardise mechanisms for the composition of active services on a single node or EE

[ANW98a].

A composite service is constructed from a set of components by means of a compo-

sition method. The composition method provides the syntax and semantics for creating

services from components. It determines the set of software components needed to

compose a service and the bindings to join these components. Composition methods

vary from fairly simple or static means of defining a service composite to highly flexible

and dynamic mechanisms. For example, a composition method may be as generic as

a programming language and hence allows users to dynamically “program” a service

composite.

Composition methods can be characterised according to the following criteria:

Sequence control: Mechanisms for controlling the invocation order of components

are referred to as sequence control. Examples of sequence control approaches

are sequential and concurrent invocation. More complex control mechanisms and

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 34

structures (for example, programming languages or dynamic graphs) are required

when components and their composites can interact with one another.

Shared data control: Mechanisms for sharing data among components are called

shared data control. Examples of methods for sharing data include explicit param-

eters, shared objects, and inheritance. Components executed concurrently can also

share data based on message passing.

Binding time: Binding time refers to the time when a composite is created. Examples

of the binding time of a composite are specification time (i.e., when the composite is

defined/compiled), creation time (i.e., when the composite is created or initialised),

and run-time (i.e., during execution).

Invocation methods: Invocation methods are the events that cause a composite or its

components to be executed. The most common invocation method is the arrival of

a network packet (i.e., packet arrival). Other possible invocation methods include

timers and other events originating from hardware components, the NodeOS or

active services.

Division of functionality: A composite is defined through a combination of content

carried within the active packets and content residing on the active nodes. For

example, a packet might carry a script program that includes calls to node-resident

components.

An examination of existing composition methods has revealed that current methods

typically lack support for multiple, independent entities. Most existing methods assume

that only one entity (for example, a single user or one script) specifies the entire service

composite for a packet or flow. However, in order to consider more complex scenarios

(see for example section 5.2.1), the composition method must allow several entities to

participate in this process. Therefore, the following characteristic to distinguish different

composition methods has been added as part of this work:

Composition control: Active service composites that are created and controlled by

a single entity are called solitary. Others that allow multiple, independent entities

to partake in the composition process are referred to as co-operative.

In comparison to implicit composition, which is simply a result of executing a pro-

gram that provides a composite service by invoking other components, explicit compo-

sition of services from independent programs or components (for example, active exten-

sions) relies on an autonomous composition method. While the former depends solely on

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 35

the capabilities of the programming language and the interfaces provided by the avail-

able components, the latter depends entirely on the composition method(s) supported

by the active node architecture.

The following basic models for explicit composition of active services have evolved

within the past few years of active network research: (a) de-multiplexing, (b) static or

dynamic plug-in approach, and (c) classification-based composition.

Model (a) is used within the DARPA active node architecture described earlier in

order to de-multiplex active packets to the corresponding execution environment. It

is rather restrictive as it limits packet processing to a single execution environment

(or active extension8). Model (b), by comparison, allows composition of independent

active extensions by means of a static graph. However, since static structures have

proved to be too inflexible for many applications, dynamic means for defining the “slot

logic” (for example, a dynamic graph or “underlying” program) have been proposed

[MBC+99]. The last composition model (c), which has been developed as part of this

work, is based on the concept of multi-stage packet classification (i.e., active services

are composed on a per-packet basis depending on the packet content). A dynamically

extensible classification graph structure ensures sufficient flexibility (for more details see

section 5.6). Figure 2.5 illustrates the fundamental concepts of these three composition

models.

Figure 2.5: A comparison of several key explicit composition models for active node
architectures: (a) de-multiplexing, (b) static or dynamic plug-in approach, and (c)
classification-based composition.

2.8 Safety & Security

As is the case for most communication technologies, global acceptance of active net-

works relies heavily on adequate safety and security mechanisms. Both aspects of active

networking – communication and computation – must be considered.
8It should be noted here that execution environments for integrated or active packet based solutions

are only a specialisation of active extensions (which provides computational services to active packets)

and hence should be considered as such.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 36

Traditional packet-switched networks offer relatively little scope for security threats;

routers merely store-and-forward packets, requiring only sufficient memory for packet

queueing and insignificant processing resources for slow-path processing9. Conversely,

active networks allow for a much broader range of attacks and safety problems result-

ing from active code execution. Providing a much higher degree of flexibility through

programmability makes active networks clearly more vulnerable.

As a consequence, active network systems require sufficiently powerful safety and

security mechanisms. While safety mechanisms are needed to ensure proper operation

of the active node, security methods are required to control access to the programming

interface and node-local resources, as well as more generic system services.

Key to the provision of safety and security within active networks is the satisfaction

of the following requirements: (1) authentication and authorisation of users (i.e., active

programmers) and mobile code, (2) validation of the code integrity (for example, through

code signatures), (3) safe evaluation/execution of the active programs, and (4) run-time

control of resource usage.

One of the primary characteristics of current network devices is robustness. Thorough

testing is carried out before new devices are released. This indicates how important

system reliability is for network devices, and even more so for active routers, where

packets are not only forwarded, but also processed by active programs. In particular,

since active programs may operate directly on the data path of a router or even in high-

privileged mode to perform system-level operations, it is vital that active processes are

restricted from consuming node resources in a way that would deny servicing other users

or even cause the node to crash.

As a result, the provision of fault-tolerance through run-time safety measures is just

as important as providing security. Precautions that ensure harmless execution of active

code are essential because even trusted code that has been obtained securely can behave

unexpectedly and hence result in a system failure.

2.8.1 Safety

Safety mechanisms for active node architectures should protect the nodes from both

malicious and erroneous active code. Mechanisms to protect node-local resources, and

prevent active programs from disrupting other active programs or even locking up the

whole system due to resource misuse are essential.

This section introduces two key approaches towards safety, namely operating system

and programming-language based protection mechanisms that are investigated within

current active network research. Although these approaches are typically used separately
9Route lookups processed in software or processing of IP options [Pos81b] are commonly referred to

as slow-path routing.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 37

by most active node architectures, they are complementary in principle.

For a more comprehensive survey of safety mechanisms for mobile or active code, the

reader is referred to a study by Wetherall [Wet95].

2.8.1.1 Systems Mechanisms

System-based techniques to protect an active node from malicious user code are also

referred to as software-based fault isolation (SFI) or sandboxing. The idea is to execute

code only within the restricted scope defined by a sandbox. Inside the sandbox, arbitrary

user code – even malicious code – can be executed. The sandbox ensures that the code

cannot break out of the safe processing environment. Malicious programs trying to

exceed the sandbox boundaries are typically stopped and removed.

The user-space process model, common in recent operating systems, shows how pro-

tection based upon SFI works. A user process, or in other words the sandbox for a

user program, defines the memory boundaries and processing quanta for safe program

execution. A program executed by such a process can therefore not harm the operating

system, or starve other user processes.

Sandboxes are typically enforced by means of software mechanisms. Modern oper-

ating systems also exploit the hardware capabilities of the CPU hardware (i.e., virtual

memory, protection rings, etc.) to enforce the sandbox boundaries. For example, the

virtual memory manager (VMM) defines the memory pages or segments a process can

access. Recently published work [CVP99] has also demonstrated the viability of using

hardware to segment not only user-space processes, but also kernel level modules. This

is particularly valuable for active networks as it allows the safe execution of active code

in privileged mode.

The main advantage of the system-based approach to safety is that active nodes

executing mobile code are responsible for their own safety. The burden of having to

use a particular (possibly new) programming language is taken from the programmer.

Furthermore, the system does not rely on external components to ensure safety (for

example, a trusted compiler for the code generation). Moreover, one could argue that

in the case of active network nodes where robustness and reliability are vital, such

system-based protection mechanisms should be mandatory anyhow in order to cope

with unexpected run-time software failures.

Although operating system-based protection mechanisms can be very safe10, context

switching between concurrent processing environments (or sandboxes) is typically costly.

Thus, in the case of active nodes, where efficient processing is vital, this approach is only

applicable with lightweight optimisations (for example, user-level scheduling).
10Note that reliable operation of hardware components can be easily tested.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 38

2.8.1.2 Programming Language Mechanisms

In contrast to operating system-based protection, research in the field of SFI and mobile

code systems has developed various programming language-based sandbox mechanisms;

for example, special language features are exploited to ensure safety during mobile or

active code execution. The concepts behind these language-based protection mechanisms

include type checking, type certification and program verification.

Type Checking

Type checking is a mechanism to ensure type safety for typed programming languages.

Based on the type information provided by the programming language, type checkers

can verify that a program uses the types (i.e., variables, data structures, functions,

etc.) in a safe manner. Depending on the semantics of the language and the degree of

type information, various levels of safety can be achieved. Examples of strongly typed

programming languages used in the context of active networking are Java [JAV] and

Caml [CAM].

Typed programming languages are designed for static or dynamic type checking,

or both. Static type checking is done once at compile time, whereas dynamic type

checking is done at execution time. Modula-3 [Nel91] is an example of a statically checked

programming language. SmallTalk [GR93] and Caml, by comparison, are examples of

dynamically checked languages.

The choice between static or dynamic type checking is a trade-off between perfor-

mance and safety. In the context of active networks, static type checking has the advan-

tage that no processing overhead for type checking is introduced during execution of the

active code. Furthermore, it is beneficial as type errors, which may result in a run-time

error, can be detected at compile time, before the code is distributed. A shortcoming of

static type checking for mobile code systems is that the target machine (i.e., the active

node) must trust the compiler of the code provider.

Dynamic type checking, by contrast, is advantageous as absolute type-safety can

only be decided at run-time. Only dynamic type checks can spot certain type conflicts

or run-time errors (for example, a reference to a wrong type or an array overrun) and take

appropriate actions. A good example to illustrate the power of dynamic type checking

is the strongly typed language Caml. It is capable of providing memory protection for

active programs based on dynamic type and bound checking.

The limitations of static type checking (for example, in many cases type casts can only

be decided at run-time) have led developers of several statically type-checked program-

ming languages to include special run-time support that enables dynamic type-checking.

For example, Java supports dynamic checking for type casts from a class instance to a

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 39

sub-class instance at run-time11.

The main shortcoming of strongly typed languages in the context of active networking

is that programmers have to bear restrictions regarding type conversions (i.e., references

to data structures cannot simply be cast to similar types for the sake of efficiency) and

memory operations (i.e., strongly typed languages lack the concept of bare memory),

which make efficient processing of network data exceptionally hard.

Type Certification

Type certification is based on the same concepts as static type checking. Specialised type

certifying compilers are used to extract static type information from the source code of

an active program. This information enables active nodes to verify the type safety of

active programs before program execution, when distributed along with the active code.

The assumption behind this approach is that programs that pass the static type

check at compile time should be safe to execute. Preserving the type information at

compile time by translating them into an intermediate language enables the target node

(consumer) to validate the safety of the program before execution (without the source

code). The important advantage of this approach is that the consumer does not have to

rely on the correctness of the producer’s compiler.

Examples of intermediate formats for type certified compilers are the Java Virtual

Machine Language (JVML) [LY96], FLINT [Sha99], and several ML derivates [SA95,

TMC+96].

Program Verification

The task of verifying the correctness of computer programs based on mathematical logic

is usually called program verification. Although verification of a set of axioms based on

reasoning principles is mechanisable and thus can be processed by computers, program

verification is known to be very difficult12. There are still no practical solutions for the

verification of large generic programs (such as “real-life” applications written in common,

non-formal languages). However, progress in the field of program verification has led to

an understanding that limited properties such as safety can be handled successfully. An

emerging technology in the field of program verification that considers only the safety

properties of the code has become known as proof carrying code (PCC). This recent

discovery has been made by Necula and Lee [NL96, Nec97].
11Note that an exception is thrown in the case of a mismatching type cast in order to allow the program

to recover at run-time.
12Program verification for non-formal programming languages relies on a formal specification of the

program and a proof that the program is equivalent to the specification. The difficulty is finding the

formal specification (since it is non-mechanisable) and proving its equivalence.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 40

PCC allows a code producer to generate automatically a formal proof of safety along

with a compiled program. The consumer can then verify the proof in accordance with its

safety policy before installing or executing the code. PCC is designed to prove program

safety rather than program correctness. Guaranteeing the execution of a program is safe

is much easier than proving a program correct.

Although PCC has been developed as a generic safety measure for mobile code sys-

tems, it turns out to be very valuable for active networks for the following reasons:

• Verifying a formal proof for PCC is easy, even when the proof may have been

very difficult to create. The burden of generating the proof is shifted to the code

producer, where it is only performed once at compile time.

• Consumers of PCC (i.e., active nodes) minimise their trusted component base to

the proof-verifying component on the local node.

• The concepts of PCC are not tied to a particular programming language or com-

piler, and thus can be applied to specialised active programming languages as well.

In summary, the main advantage of using a language-based approach to system safety

is that minimum support is required in the NodeOS. However, this simply shifts the bur-

den to the language compiler or interpreter, and the execution environment processing

the active program. The disadvantages are that a special execution environment for

the safe interpretation of the (intermediate) language must be provided on the target

node. And although the use of intermediate languages typically simplifies portability,

efficiency of the program execution certainly suffers from the evaluation of the bytecode.

Furthermore, forcing active programmers to use a specific language because of system

safety may restrict the problem domain that can be addressed or the efficiency of the

implementation.

2.8.2 Security

Security within active networking is vital to prevent unauthorised users or active pro-

grams from gaining access to critical system services and configurations, and from con-

suming network and system resources (i.e., processing cycles, memory, and bandwidth).

The security architecture of active nodes must therefore provide secure access control

for a node’s programming and system interface.

Two key components of the security architecture are the policy database and the

enforcement engine. The separation of policy specification and storage from the policy

enforcement maximises flexibility. For example, it enables dynamic policy specification

at run-time.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 41

The separation of security policies for different subsystems, namely the NodeOS, the

EEs and the active code, is recommended to improve manageability. Allowing policies

of a highly privileged subsystem to take precedence over a less privileged subsystem

guarantees safety, besides the improvement in manageability. For example, it allows EE

policies to specialise, but not override, NodeOS policies.

The notions of principal and credential have been introduced [ANW01] to facilitate

security policing within active network architectures. A principal is the entity on whose

behalf security decisions are made. It may be an individual user, a group of users, or

an active program. A principal’s request to access a certain resource or system service

is granted or denied depending on its authorisation (i.e., its authenticity and access

privileges). Consequently, since security within an active network is primarily a matter

of authorising principals, the concept of credentials, which embodies both a description

of the identity of a principal and its access privileges, has been proposed. Credentials

are usually passed as a parameter to the interface function. The policy enforcement

engine intercepts the function call and verifies the credentials. This involves checking

the principal’s identity (i.e., user, group or role) and access privileges against the policy

database to determine whether or not the call is authorised.

Experience has shown that the attempt to describe security policies in terms of each

individual principal and its privileges for a specific object does not scale. Instead, it is

desirable to define groups of principals and objects with common privileges or security

requirements such that policies can be aggregated. Credentials then include the group

attributes associated with the principal, rather than the individual object attributes.

From the discussion so far, it is clear that the primary security mechanisms required

are authentication and access control. Mechanisms for both are described in more detail

below. In addition, a third security practice, known as “module-thinning” is introduced.

2.8.2.1 Authentication

Authentication is commonly achieved through cryptographic means [DVW92]. As the

overheads of user and code authentication within active networks needs to be minimal13,

non-negotiated or one-way authentication mechanisms based on asymmetric encryption

mechanisms (for example, RSA or DSA) are preferred [ANW01]. These methods nor-

mally require the consultation of some form of public key service or certifying agent to

verify the cryptographic protection (i.e., digital signature or private key) [oST94].

Common cryptographic algorithms for authentication include public key signatures

(e.g., RSA, DSA), (keyed) hashes (e.g., MD5 , SHA-1), and symmetric key encryption

(e.g., DES, triple-DES).
13Note that active network systems have stringent QoS requirements regarding the latency and

throughput that is introduced by intermediate nodes.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 42

2.8.2.2 Access Control

Besides authentication, which is just a means to validate a principal’s identity, a mech-

anism to control access to the node resources and system services based on credentials

is required. Access control is typically split into two parts: (1) the control mecha-

nism (policy enforcement) safeguards the interface by granting access only to authorised

operations; and (2) the access control list (ACL or policy database) stores the access

privileges for each principal or group of principals.

Although research into policing on active node architectures is progressing, a common

agreement (for example, a universal language) for the specification of active network

policies is still lacking. The main problem is down to the fact that the types of policies

supported by a node depend to a large degree on the node implementation and the

control mechanisms provided. Examples of policy and trust management systems are

PolicyMaker [BFL96] and KeyNote [BFK98], both of which are exploited for resource and

access control within the secure active network environment (SANE) [AAKS98] at the

University of Pennsylvania. They offer a special-purpose language for expressing policies

in terms of signatures of principals and delegation of trust. More recently, research

at Imperial College London has proposed two new policy types for active networks,

called obligation and authorisation policies [SL99], along with a generic and extensible

specification language for policies, named Ponder [DDLS01].

2.8.2.3 Module-Thinning

Module-thinning is a special approach towards access control that has noteworthy advan-

tages for active networks. Unlike conventional access control mechanisms that safeguard

the interface, module-thinning controls system access by tailoring the interfaces exposed

to a program during start-up based on the privileges of the program and/or the user in-

stantiating the program. Thus, depending on the principal’s authority, module-thinning

dynamically links (at execution time) customised libraries to a program that exposes

only interfaces for which the principal is authorised. This mechanism is most secure as

unauthorised interfaces are completely removed and hence leaves no possibility for an

attack.

The downside of module-thinning is that fine-grained access control (allowing/deny-

ing individual function calls on a per-principal basis) is not feasible. This would demand

either a specialised dynamic linking technique, where link libraries are generated on-

the-fly at execution time, or a large set of pre-compiled libraries, each exporting a fixed

range of functionalities.

CHAPTER 2. ACTIVE AND PROGRAMMABLE NETWORKS 43

2.9 Summary

This chapter has introduced and put into context the field of active and programmable

networks. It has set the basis for the advances and further research presented throughout

this thesis.

In section 2.2, the background and chronological emergence of the research into active

and programmable networks has been introduced. Section 2.3 then defined the scope of

the field and divides it into conceptual different approaches to network programmability,

namely active networks, open signalling and intelligent networks.

As the focus of this work lies in the design of a flexible and extensible active router

architecture, the subsequent sections examined the issues and problems of active net-

works. While section 2.4 defined the methodology of this approach and describes the

fundamental tenets of active network architectures, section 2.4.2 reflected on the impact

of network-side processing with regard to the semantics of network communication and

the end-to-end argument.

At the core of this chapter has been the division of active network research into

two fundamental approaches: active packets and active extensions. It has been shown

throughout this chapter and the following (chapter 3) that these different approaches

have an important impact on the suitability for various application domains.

Finally, section 2.5 continues by introducing the de-facto standard for active node

architectures as viewed by the DARPA funded active network community, comparing

various programming models based on different code distribution and encoding schemes

(section 2.6), introducing the concept behind service composition along with a compar-

ison of several composition models (section 2.7), and discussing the issues of safety and

security for this domain (section 2.8).

Chapter 3

Related Work

3.1 Overview

This chapter outlines important contributions already made in the area of active net-

works and shows the multitude of research areas that have been followed. Since the

focus of the work presented in this thesis concerns the development of a novel active

node architecture, this chapter focuses primarily on completed and ongoing work in

active systems design and enabling technologies. A number of research projects that de-

sign and develop active network systems and services are studied. The chapter concludes

with an overview of current work on active applications and services.

Since the beginning of research into active networks, many research groups have tried

to develop active network architectures. The diversity of research groups has led to a

large variety of different approaches. These approaches can be divided based on the

following criteria:

• Programming Interface: The programming interface determines the programming

capabilities of the active network. Programming interfaces range from very specific

interfaces (for example, to control the forwarding behaviour) to general-purpose

interfaces that enable full data path programmability.

• Programming Model: The programming model defines the type of code distribution

mechanisms (in-band or out-of-band) and encoding schemes (source code, inter-

preted code, bytecode, or binary code). The encoding approach, in other words the

programming language and/or compiler/interpreter, has an impact on the security

architecture. For example, code interpretation relies only on a safe interpreter,

while binary code execution demands system support to enforce security.

• Service Composition Model: The service composition model supported by the ac-

tive network architecture defines how active services can be composed. For ex-

44

CHAPTER 3. RELATED WORK 45

ample, composition granularity and flexibility depends on the ease of active pro-

gram/component interaction and the composition control (solitary or co-operative).

They typically range from fairly static (creation time) to highly dynamic (run time)

mechanisms.

• Security Model : The security model defines how safety and security is accomplished

by the active node. Depending on the programming and composition model, differ-

ent security measures are best suited. For example, in-band active code execution

relies on lightweight security checking and hence interpreter or virtual machine

based solutions are preferred.

The following section examines various active network architectures and compares

their different approaches according to these criteria.

3.2 Active Network Architectures

The programming and composition model of an active network architecture has a key

impact on the types of network services that can be provided and the granularity by

which those services can be introduced. The spectrum of potential programming models

ranges from simple configuration scripts to sophisticated software extensions and from

conservative to highly dynamic and flexible levels of programmability.

Two of the first active network projects, namely the ANTS project at MIT [WGT98]

and the SwitchWare project at the University of Pennsylvania [AAH+98], have strongly

influenced the directions within active network research. The former has reanimated

the idea of active packets carrying active code along with packet data. This so-called

integrated approach represents a highly dynamic means of code and service deployment

(i.e., on a per-packet basis). However, carrying the active code in-band imposes restric-

tions on the code size and hence the complexity of the active programs. The latter, by

contrast, has introduced the concept of active extensions to programmable routers. This

approach, which is also referred to as discrete approach, enables the injection of active

programs separately from the actual data packets. As active extensions are typically

delivered out-of-band, before the data is sent, this approach is usually less dynamic (i.e.,

active programming is not performed on a per-packet basis). As a consequence, however,

the discrete approach does not impose any restrictions on the size or complexity of the

active extensions.

These to some extent diverse approaches have led early work on active networks

into different directions. However, as hybrid solutions have evolved over the years, the

divergence has become less apparent.

CHAPTER 3. RELATED WORK 46

The following sections comprise a survey of relevant active network projects and

architectures. They are grouped by their fundamental approach – integrated or discrete.

3.2.1 Integrated Active Network Solutions

Much of the early work in active networking was stimulated by a paper of Tennenhouse

and Wetherall on the concept of active capsules [TW96]. The Telemedia group at MIT

has first pursued the idea of placing program fragments into IP packets as part of the

ActiveIP project [WT96]. Initially, they studied the potential of placing small programs

within the option fields of IP packets. These so-called active options, encoded in Safe-

Tcl [OLW98] in their prototype implementation, were “executed” (i.e., evaluated) by

modified network nodes as the packets traversed the network. Despite the limitations

of this simple approach, namely lack of safety, security and resource management, the

work demonstrated the potential of integrated or active packet based solutions.

Further work on ActiveIP has led to the development of the popular Active Net-

work Transfer System (ANTS), which provides a base platform for many active network

solutions today.

The remainder of this section introduces several key active network systems based

on the integrated approach starting with the pioneering ANTS system.

3.2.1.1 ANTS – Active Capsules

The main objective driving the efforts at MIT was the development of a common com-

munication model (as opposed to a particular protocol) that enables the dynamic and

uncoordinated deployment of new communication protocols, as they become needed.

Their active network toolkit, known as ANTS [WGT98], provides a set of core services

including support for transportation of mobile code, code loading on demand and code

caching techniques. These core services allow network architectures to deploy new net-

work protocols or extend existing ones.

The two key concepts of the ANTS architecture can be summarised as follows: (1)

traditional data packets are replaced by active capsules that carry the processing in-

structions to be executed by the active routers along the transmission path; (2) an

intelligent code distribution mechanism ensures that missing service routines are auto-

matically loaded and instantiated on-the-fly by network nodes along the transmission

path. The operation of this mechanism is demonstrated in the following scenario: A cap-

sule, dependent on certain functionality that is not locally available yet (i.e., cached),

causes the distribution module to fetch the missing function(s) from the previous node

(along the transmission path).

This mechanism has the advantage that code is loaded only when and where needed.

CHAPTER 3. RELATED WORK 47

Furthermore, retrieving the code directly from the previous hop ensures rapid loading.

The ANTS capsule execution model supports highly dynamic and fine-grain net-

work programmability on a per-packet basis. The intermediate network nodes along the

transmission path are responsible for capsule execution and forwarding, distribution of

capsule code, and maintenance of processing state between subsequent capsule execu-

tions. The atomic units of code sent as part of the active capsules enable programming

of their forwarding behaviour and (re-)configuration of the nodes along the transmission

path.

Capsules are executed within a restricted run-time execution environment provided

by the active nodes. The ANTS execution environment exposes a network API for use

with capsule programs. This run-time environment, for example, supplies primitives for

configuring routing behaviour, controlling capsule scheduling, establishing inter-capsule

communication, and storing soft-state information on the routers. The execution en-

vironment limits access to shared resources in order to protect the active nodes from

malicious or erroneous capsules. For example, the notion of capsule processing quanta

has been introduced as a metric for the management and control of node-local processing

resources.

A prototype implementation of ANTS is available in Java. Java has been chosen

because of its support for code mobility (i.e., dynamic loading/linking support for byte-

codes is available) and safety (i.e., the Java virtual machine supports software fault

isolation). The functionality of ANTS has been demonstrated with the development

and deployment of several protocols and extensions, including a high performance re-

liable multicast extension [LGT98] and a TCP SYN-flooding defence protocol [Van97].

Furthermore, ANTS has also been incorporated at different sites of the ABone1 as one

of several active network technologies.

3.2.1.2 PLAN

The design and development of the Programming Language for Active Networks (PLAN)

[HKM+98] was stimulated by the need for an active packet programming language as

part of the SwitchWare project at the University of Pennsylvania (see section 3.2.2.1).

The PLAN programming language and execution environment have been specifically

designed for lightweight and simple programming of active packets. The functional

programming language, which is based on the simply-typed lambda calculus, has been

carefully designed in order to keep the language lean and secure. As a result, PLAN

programs tend to be very small (to fit easily inside active packets), strongly-typed (to

improve safety), and functionally-restrictive (to simplify security provisioning).
1The ABone [BR99] is a DARPA-sponsored experimental active network built on top of IP.

CHAPTER 3. RELATED WORK 48

First of all, PLAN is designed considering a two-level programming architecture, in

which PLAN serves as the high-level scripting language for active packets that ‘composes’

services from low-level functionality residing on the nodes. It provides the ‘glue’ to create

value-added and customised network services from low-level SwitchWare services2. The

distinction between high-level (lightweight) and low-level (heavyweight) programmabil-

ity has been drawn by SwitchWare to help the design of the lean and efficient packet

language.

Second, designing PLAN as a strongly-typed programming language has the advan-

tage that programs can be statically type-checked before packets are injected into the

network. This eliminates many potential type errors at compile time and also minimises

the need for costly safety checks at run-time (see section 2.8 for more details).

Third, PLAN is carefully designed to keep the language lean and secure. It restricts

the provided functionality deliberately in order to minimise the need for costly security

checks. A new language feature has been added only when crucial functionality was

missing and in that case the usability of the language was enhanced without compro-

mising security (i.e., all existing security guarantees were preserved). As a consequence,

PLAN has not evolved into a “complete” programming language; common functional

programming constructs, such as recursion and mutable user-defined state, are miss-

ing. To compensate for these limitations, the PLAN execution environment exposes an

interface to the extensible SwitchWare service routines.

Furthermore, PLAN provides explicit support for resource management, which en-

ables the run-time environment to control resource usage during execution of the active

packets. To facilitate this, the execution environment implements a fixed counter ap-

proach whereby the amount of processing and memory resources required to process a

packet is counted until either the active program terminates, or a counter exceeds the

upper bound for a resource. This causes immediate termination of the processes by

the system. A garbage collection mechanism takes care of freeing unnecessarily bound

resources upon process termination.

PLANet

The PLAN programming environment has been used to build an active inter-network,

known as PLANet [HMA+99]. Although it is implemented as an overlay network based

on UDP/IP for simplicity reasons, all packets include a PLAN program in the payload

(just as “real” active packets).

A number of experimental applications, such as reliable and unreliable datagram

delivery mechanisms, as well as standard network protocols, such as RIP-style routing
2Note that these low-level SwitchWare services can be fully programmed in a general-purpose lan-

guage.

CHAPTER 3. RELATED WORK 49

and address resolution based on ARP, are already supported. Experimentation with

these protocols has shown that PLAN is sufficiently expressive to replace the protocol

headers in the packets by PLAN programs. This illustrates the potential of PLAN for

the design of new network protocols.

3.2.1.3 SmartPackets

The SmartPackets project [S+98] at BBN Technologies developed an active network

solution based on active packets that encompasses special support for network manage-

ment and monitoring applications. Schwarz et al. [SJS+00] argue that active networks

technology is well suited for network management, as intelligent processing inside the

network (i.e., closer to the nodes being managed) improves communication efficiency

and event discovery compared to current techniques. Most traditional systems still rely

on passive “polling” techniques to identify network problems (rather than on active

“pushing” techniques).

Two fundamental design decisions were made to limit the complexity and simplify se-

curity on SmartPackets nodes. First, routers maintain no persistent state across packets.

This implies that programs sent in smart packets must be completely self-contained and

hence limited in size (i.e., smaller than the MTU). Second, the run-time environment or

the virtual machine that executes SmartPackets code must provide a safe environment

with well-defined and secure interfaces to critical system services and resources.

To this end, the project has developed two programming languages: Sprocket and

Spanner. Sprocket is a high-level language similar to C, but without safety critical

constructs such as pointers. In order to facilitate network programmability, Sprocket

includes special features for network management related computations as part of the

language (for example, special types for data packets and MIB3 access). Spanner, by

comparison, is an assembler language (for CISC4 architectures) that can be compiled

(assembled) into a compact machine-independent binary encoding. Although Spanner

is largely similar to conventional assembly languages, several changes have been made

to ensure safety. For example, all variables are declarative and no direct memory access

is possible; only variables and a stack can be used for storage. The two languages

complement each other as follows: Sprocket programs are first compiled into Spanner

code, before this is assembled into the compact binary format. The Spanner intermediate

language format allows for manual optimisation of the code before the machine code is

produced.

The processing of “smart” packets on intermediate nodes is triggered by the Router

Alert option [Kat97]. The ANEP encapsulation protocol [A+97] (introduced in chapter
3Management Information Base
4Complex Instruction Set Computer

CHAPTER 3. RELATED WORK 50

2) provides the basis for the de-multiplexing of the packets to the correct execution

environments. Four types of “smart” packet have been defined: program packets, data

packets, error packets, and message packets. Program packets carry the code to be

executed on the active routers along the transmission path. Data packets are used to

report the results of the program execution back to the originating network management

program. Message packets carry informational messages rather than code. And finally,

error packets are used to indicate transport errors or execution exceptions.

Security within SmartPackets is achieved through authorisation and integrity checks

on the “smart” packets. An authenticator sent in every packet allows the packets to be

authenticated and checked for their integrity before the code is executed.

3.2.1.4 Related and Subsequent Work

A high performance active network node, called PAN [NGK99], is currently underway

at MIT. PAN is a kernel based implementation of the active capsule approach. It is

designed to support multiple mobile code systems. Currently PAN supports two code

systems, one for Java bytecode and one for Intel x86 object code5. PAN is able to achieve

high performance despite executing mobile code on a per-capsule basis. The following

design decisions account for the performance improvement in PAN: in-kernel capsule

processing, minimal data copying, and code caching for mobile code. A capsule in PAN

contains both the data it transports and a reference to a code object that contains

the active program to be evaluated at each node. If a code object is unavailable, it is

dynamically loaded as proposed by the ANTS framework [WGT98]. PAN also provides

a node-local state store that can be accessed by capsules traversing the node. The state

store manages capsule state as soft state since nodes may be restarted from time to

time or the network topology may change. Memory management within PAN nodes is

achieved based on the idea of software segments6. Software segments provide a means

for platform-independent buffer management which is equivalent to that found in most

modern operating systems. It allows multiple mobile code systems to coexist and share

memory without the need of costly data copy operations. Performance measurements

on PAN have shown overheads as little as 13% for the processing of capsules based on

native object code (which lacks safety, security, and portability) compared to standard

packet forwarding. These results are based on their prototype implementation for Linux

and a capsule size of 1500 bytes.

Another initiative, the SNAP (Safe and Nimble Active Packets) [MHN01] approach
5Although, at the time of publication, the Java code system was only available as a user-space

implementation, a kernel-space Java VM is apparently in progress.
6The reader should note that despite the terminology overlap with segmentation in virtual memory

systems, memory segments in PAN do not provide protection.

CHAPTER 3. RELATED WORK 51

developed at the University of Pennsylvania, extends various existing active network

technologies (i.e., ANTS, PLAN) by an integrated resource control mechanism. Moore

et al. argue that the time-to-live (TTL) packet proliferation limiter and fixed resource

bounds are not sufficient to limit resource consumption. For example, protection against

denial-of-service attacks (based on many small active packets) requires resource bounds

that are linear to the packet size. Like PLAN, SNAP limits the expressibility of the

programming languages in order to restrict packet execution. However, SNAP goes

further by limiting expressibility such that programs cannot exceed resource bounds (for

bandwidth, CPU, and memory) that are linear in proportion to the packet length. This

permits active nodes to enforce a strict upper bound on the resources used by a packet.

The designers claim that SNAP fully retains the flexibility and performance of existing

systems despite the language restrictions.

Finally, PANTS, proposed by Fernando et al. [FKFH00], extends the ANTS frame-

work by a mechanism that enables dynamic changes to the active node at run time.

For example, PANTS nodes are capable of dynamically changing the run-time execution

environment, and capsules are able to dynamically rewrite their code. The latter is par-

ticularly challenging within Java (the programming language used within the framework)

as it is statically typed. Furthermore, PANTS capsules are self-organising. They dy-

namically arrange themselves into groups of similar interest without the need of a central

authority. These features make PANTS a flexible and dynamic active node architecture.

3.2.2 Discrete Active Network Solutions

The active network solutions described so far are all based on the principle of in-band

active code distribution and packet processing. However, the processing of data packets

is conceptually independent from the task of injecting programs into a programmable

node. An out-of-band mechanism for program distribution and a discrete programming

model is advantageous when the loading must be carefully controlled.

The main objective of the discrete or “programmable switch” approach is to provide

a level of functionality close to that of a Turing machine. While active packet based

programming is inherently restricted to lightweight programming (only small programs

can be included in every packet), this approach has the potential for more fundamental

extensions. In the context of active networking the idea of out-of-band injection of active

code first emerged within the SwitchWare project (see below).

The remainder of this section presents a number of discrete active network solutions.

CHAPTER 3. RELATED WORK 52

3.2.2.1 SwitchWare

The SwitchWare active network architecture [AAH+98] developed at the University of

Pennsylvania provides an all-embracing active network solution based on three distinct

layers: a secure active router, active extensions, and active packets. The layered architec-

ture allows for different security mechanisms and programming models to be employed

on each level while still meeting the challenge of flexibility and performance.

The secure active router layer – the bottom layer of the SwitchWare architecture –

provides the foundation for the upper layers. It provides operating system support for

the programmable layers above, whereby maximum security and performance are the

primary objectives.

The active extensions form the middle layer of the architecture. This intermedi-

ate layer of programmability enables extensibility of a router’s core functionality. The

node-local extensions, also referred to as switchlets, are one of the key contributions of

SwitchWare. Like active packets, switchlets can be dynamically loaded and executed on

a switch. However, since they are not mobile7, these extensions are not required to be

lightweight and portable. Therefore, switchlets can be written in general-purpose pro-

gramming languages. Nevertheless, security and safety still play an important role on

this layer, and as a result, a variety of mechanisms, including sandboxing, authentication

and program verification techniques, are deployed to ensure safety and security.

The active extension layer in SwitchWare provides an execution environment for

switchlets. The prototype implementation of this layer, also referred to as the Active-

Bridge [ASNS97], is based on a single-language environment. The strongly typed ML

dialect, Caml, is used for the implementation of the ActiveBridge layer and the actual

active extensions. Caml achieves module isolation by means of name space security (as

opposed to address space security). Also, Caml bytecode is dynamically loadable and

machine independent, which permits dynamic deployment of active extensions on dif-

ferent SwitchWare router platforms. These are many of the features also found in Java;

however, Caml maximises performance by means of static type checking, which enforces

type safety during compilation and linking, rather than at run-time.

The active packet layer, which constitutes the top layer of the SwitchWare archi-

tecture, enables network programmability based on small mobile programs delivered as

part of the data packets. As previously discussed in section 3.2.1.2, active packet pro-

gramming is based on the PLAN programming language. PLAN has been specifically

designed to meet the requirements of active packet programming in environments where

low-level functionality can be extended by means of active extensions. For example,
7Unlike active packets, those extensions do not travel through the network (i.e., they are only executed

on a specific node).

CHAPTER 3. RELATED WORK 53

limitations resulting from language restrictions in PLAN can be overcome by providing

the functionality lacking through active extensions.

SANE

The Secure Active Network Environment (SANE) [AAKS98] is another outcome of the

SwitchWare research project. Despite the fact that a prototype implementation of SANE

was developed in the context of SwitchWare, SANE addresses the problem of security

for active network environments in general.

SANE comprises a secure bootstrapping mechanism providing static integrity guaran-

tees for active nodes (i.e., firmware and operating system components are checked). Once

the system is safe and operational, SANE provides dynamic integrity checking mecha-

nisms for the module loader and execution environment. Moreover, SANE includes a

secure key and certificate exchange mechanism that enables code authentication. The

cost of safety and security provisioning based on SANE has been examined by Alexander

et al. [AAA+99].

3.2.2.2 NetScript

The NetScript project [YdS96], which started in 1996 at Columbia University, was an-

other pioneering project in the area of active networks. The project investigated three

distinct areas: a programming model for active networks, a programming language for

network programming, and a programmable node architecture.

NetScript proposes a distributed programming model whereby the script programs

determine the processing of packet streams on individual network nodes. The script

programs provide the “glue” for customising node-resident functionality and services.

These NetScript programs are also referred to as agents, which accounts for the fact

that the programs travel around the network in order to program the nodes.

The network architecture developed for NetScript comprises Virtual Network Engines

(VNEs) and Virtual Links (VLs). VNEs are interconnected by VLs to create a NetScript

Virtual Network (NVN). An NVN may correspond only loosely to the underlying physical

network; a node might be responsible for executing several VNEs, and a physical link may

relate to a collection of VLs and vice versa. The architecture provides great flexibility

regarding interoperability with existing network architectures and protocols. An NVN

can be either overlaid on top of other networks (for example, a VL may be implemented

on top of IP), or NetScript can be deployed to implement an existing protocol stack (for

example, a NetScript agent may implement IP routers in VNEs).

The script language NetScript [dS98] – a small and simple, object-oriented dataflow

language designed specifically for the programming of stream-based computation – is

CHAPTER 3. RELATED WORK 54

used to program the agents. It is particularly suitable for programming network tasks

such as packet routing, traffic analysis, control signalling, and network management.

The language has three important features. First, it provides a universal abstraction

of a programmable node. The VNE hides the heterogeneity of the nodes by provid-

ing a cross-platform virtual machine abstraction. Second, NetScript supports dynamic

programmability by allowing new code to be loaded and executed on-the-fly without dis-

rupting processing on the VNE. Finally, NetScript is a dataflow-driven language, which

means that computation is triggered through the arrival of packets rather than normal

program control structures.

The NetScript node architecture is made up of several modules, namely the agent

service layer, the connectivity service module and the resource manager. The agent

service layer provides a multi-threaded execution environment for agents based on the

SMARTS Operations Server (SOS) implementation [ART94]. The connectivity service

module allows agents and VNEs to interact with the underlying physical environment

in order to allocate and maintain VLs. Finally, the resource manager enables agents to

control the allocation of VL resources, and the scheduling and transmission of packets.

The communication model chosen for NetScript allows a single stream to be processed

by multiple agents. When a packet arrives at a VNE, the NetScript specific encapsula-

tion header, which contains information on how to process a packet (for example, the

sequential order of agents that need to be invoked), is used to dispatch the packet to

the corresponding agents. As such, NetScript can be seen as a hybrid solution that is

based on a discrete programming model regarding the distribution of active code and

the type of active services provided (i.e., NetScript agents offer persistent functionality)

while relying on the integrated model for the in-band processing of the encapsulation

header.

More recent work on NetScript has resulted in a service composition framework

[dSFY98] that enables interoperability and extensibility of existing protocols and end-

to-end service composition.

3.2.2.3 Bowman & CANEs

Researchers at Georgia Tech have been developing an active network architecture com-

prising the Bowman NodeOS and the CANEs execution environment [MBC+99]. The

Bowman NodeOS layers active network-specific operating system functionality, namely

abstractions for communication, processing and storage, and an extension mechanism

to enrich the functionality, on top of a standard host operating system. The CANEs

execution environment provides a composition framework for active services based on

the selection of a generic underlying program, which defines the basic type of service pro-

CHAPTER 3. RELATED WORK 55

vided (for example, forwarding), and the insertion of customised code into well-defined

slots of the program.

Bowman offers three basic abstractions to support active programmability through

the CANEs execution environment:

Channels represent communication end-points that support sending and receiving

packets via an extensible set of protocols. For this abstraction Bowman exposes functions

to create, destroy, query and communicate over channels. A special type of channel,

called a cut-through channel, is provided for packets that do not require active processing

on the node. This enables “fast-path” processing for non-active traffic.

A-flows are the primary abstraction for computation; they encapsulate processing

contexts and user state. Each a-flow consists of one or multiple threads and executes

on behalf of an identified principal. A set of functions to create, destroy and run a-

flows is provided. Furthermore, the a-flow concept is extended to provide a generic

timer mechanism. A dedicated timer thread is deployed to execute user-defined callback

functions upon timer expiration.

The state-store provides a mechanism for a-flows to store and retrieve state. It pro-

vides functions to create, store, retrieve, and remove data. The state-store also provides

a mechanism for data sharing between a-flows without sharing program variables.

Figure 3.1: The Bowman NodeOS – Illustration of the Bowman node abstractions:
input/output channels, a-flows and state-store, and the service composition approach.

The way in which these abstractions are used is illustrated in Figure 3.1. It shows

a schematic of the packet processing path. First, incoming packets undergo an initial

classification step that identifies a set of channels on which a received packet should be

processed. Second, once channel specific processing completes, the packet undergoes a

CHAPTER 3. RELATED WORK 56

second classification step that identifies the a-flow or cut-through path to be processed.

A-flow processing is determined by the active code specified at creation time. A-flow

code can be dynamically introduced into a Bowman node by means of a dynamic code

loading mechanism.

Since Bowman provides only the low-level node OS functionality of an active network

node, a high-level execution environment providing a programmable network interface to

the users (for the a-flows) had to be incorporated to attain a complete systems solution.

As a result, the Georgia Tech group developed the CANEs execution environment.

The main thrust behind CANEs is the slot processing model. It comprises two parts:

an underlying program (fixed part) that represents the uniform processing applied to

every packet, and the injected programs (variable part) that represent user specific com-

putation on packets. The underlying program defines specific points (or slots) where

user programs can be injected. Service composition within CANEs is therefore a two

step process. First, an underlying program providing a basic service (for example, packet

filtering or forwarding) is selected from amongst those currently installed on an active

node. In the second step, a set of injected programs is selected to customise the under-

lying program. These injected programs are either already available at the active node

or can be downloaded from a remote site.

Performance measurements with the Bowman NodeOS have shown that its perfor-

mance is slightly below standard gateway applications. The overheads resulting from

the frequent system calls and context switches, and the massive data copies required

for normal user-space processing of active packets precludes Bowman from sustaining

high throughput. However, it has been demonstrated that Bowman is able to satu-

rate a 100 Mbps Ethernet for packet sizes close to the maximum Ethernet frame size

[MBZC00]. Nevertheless, it is clear that the processing load as a result of the frequent

context switching between user-space execution environments and the active NodeOS

in kernel-space, and particularly the massive copy operations involved in shuffling the

packet data up into user-space (and back to kernel space) is excessive.

3.2.2.4 Joust

Researchers at Arizona University have designed and developed Joust [HBB+99] – a

Java-based platform for liquid software. The term ”liquid software” [HMPP96] refers

to mobile, communication-oriented software or code that is able to “flow” through a

network. Joust is therefore primarily designed as a platform for communication-oriented

systems, such as active networks.

Liquid software encompasses an entire infrastructure for dynamically moving func-

tionality inside a network. It can be considered as a dynamically configurable remote

CHAPTER 3. RELATED WORK 57

procedure call (RPC) system, which enables clients to define the interface and semantics

of the RPCs by downloading the appropriate code onto a server prior to the calls. This

allows programming of network nodes through customised interfaces, which are specifi-

cally tailored to the task at hand. A key functionality of liquid software is therefore the

ability to support mobile code throughout the network, between end-hosts and network

nodes. Active networks, which allow users to customise dynamically the network by

injecting code, are considered a key application of liquid software.

The Joust programmable node is built from three major components: the Scout

OS, which will be further described in section 3.3.1.1, a Java run-time system, and a

just-in-time (JIT) compiler.

The Joust Java run-time system [JOU] implements a custom Java Virtual Machine

(JVM) as a Scout module. A virtual machine based execution environment for mobile

code has the advantage that platform heterogeneity throughout the network is hidden

by a common programming interface. In order to overcome the resource access and

control limitations of the JVM, Joust adds special support for lower-level abstractions

for real-time scheduling to the JVM. Furthermore, since high performance of mobile

code execution is a key issue for liquid software (and active networks in general), Joust

has optimised the JVM at several levels: First, the core JVM has been optimised so

that potentially slow functions are made more efficient. Native implementations in C of

performance critical functions have been incorporated. Second, the Java API has been

extended to support Scout specific functionality, such as operations on Scout paths.

Evaluation experiments with a prototype Joust implementation have shown that the

Joust JVM performs in the order of 2.3 times faster than the Sun JDK 1.1.3 [HBB+99].

The Joust JIT compiler is required to achieve high performance within liquid soft-

ware. The JIT dynamically translates Java bytecode to the native instruction set of the

host processor at loading time of a Java class. This enables the dynamic integration of

mobile code that implements new or improved services on a Joust node without losing

the performance benefits of statically compiled code.

A demonstration of the Joust system is based on a port of MIT’s ANTS framework

(see section 3.2.1.1). The ANTS execution environment has been translated to C code

and compiled to a native Scout module. The Joust JIT compiler is required to compile

the protocols carried by the active capsules and to dynamically link them to the ANTS

module. A performance comparison with the original ANTS systems has indicated gains

up to 3-5 times faster than the original JDK based implementations.

In conclusion, Joust has revealed valuable results for the field of active networks. It

provides not only a flexible and programmable platform, but also gives evidence that

communication-oriented operating system support is an essential component for efficient

active networks.

CHAPTER 3. RELATED WORK 58

3.2.2.5 LARA

The Lancaster Active Router Architecture (LARA) [CFSS99] developed from 1998 on-

wards proposes a low-cost, scalable high-performance active router platform. The ar-

chitecture encompasses both hardware and software design. The initial architecture

consists of four parts, namely the Cerberus hardware architecture, the LARA Platform

Abstraction Layer (LARA/PAL), the LARA MANagement component (LARA/MAN)

and the LARA Run-Time execution environment (LARA/RT).

Figure 3.2: The LARA Hardware Architecture

The Cerberus hardware architecture forms the basis of a LARA node. It suggests a

platform that can be built from off-the-shelf low-cost hardware components. Cerberus

achieves high performance due to the following design decisions: (1) a cluster of high-

performance processor units is used for the active computation and (2) active processing

is carried out in kernel-space which enables fast processing as expensive copy operations

and context switches are avoided. Scalability is achieved by use of dedicated processor

units for each network interface. Extending the number of router interfaces therefore

increases the processing power proportionally. A scalable high bandwidth backplane (for

example, switched ATM) interconnects the interface processing engines and ensures high-

speed communication between them (see Figure 3.2). A single management processor is

responsible for just-in-time active code compilation, configuration, authentication and

policy management. The prototype Cerberus implementation uses a dedicated Intel

Pentium II 266 MHz processor equipped with 128 MB RAM for each forwarding engine.

The backplane interconnecting the forwarding engine consists of a SCSI bus, which

enables transfers of up to 500 Mbps.

The LARA Platform Abstraction Layer provides a platform independent layer that

enables the deployment of LARA execution environments on various hardware platforms.

It exports a set of programming primitives (i.e., API to control and manage scheduling,

CHAPTER 3. RELATED WORK 59

memory, network bandwidth, and policy enforcement) for use by the execution envi-

ronments. This abstraction layer with its well-defined programming interface facilitates

the development and deployment of divergent execution environments (i.e., SwitchWare,

ANTS etc.) on LARA active nodes. LARA/PAL has been included in order to account

for the assumption that no single execution environment and/or active programming

language will fully satisfy all types of active applications and services.

The LARA Management component is responsible for ensuring security on LARA

nodes. Based on a policy infrastructure and an authentication mechanism, LARA/MAN

ensures that only authorised active code (originated from a trusted source and installed

by an authorised user) is loaded and executed by the active processing engines.

Finally, the LARA Run-Time environment is the implementation of a particular

execution environment based on an extension of the Linux 2.2.x kernel. Active code

for the LARA/RT is provided in the form of loadable kernel modules. Code loading

and unloading is based on the standard kernel module loading mechanism provided by

Linux. Active code for the LARA/RT is written in C8 and distributed either in the form

of a binary module or source code9. In order to ensure fair scheduling of the processing

resources on a LARA node, LARA/RT includes a dedicated pre-emptive scheduler for the

active module threads. This also prevents faulty active modules from locking the system.

The decision to place the active processing in kernel-space simplifies the data handling

on the node and thus ensures high network throughput. The downside, however, is that

the LARA/RT, which adds merely kernel threading and packet capture support to the

Linux kernel, is difficult to program.

Although only a subset of the LARA architecture has been implemented, it has pro-

vided a useful input into prototyping the LANode active router (see section 3.2.2.8).

The completion of the LARA implementation has been superseded by the developments

presented in this thesis. The redesign of the LARA software architecture as proposed

herein has led to a new active router architecture, called LARA++. Despite the com-

prehensive redesign of the LARA software architecture, LARA++ considers the scalable

and high-performance Cerberus architecture as one possible hardware platform.

3.2.2.6 Click

MIT’s Click [MKJK99] is a software architecture for building flexible and configurable

routers. A Click router is “configured” from packet processing modules called elements.

Individual elements support simple router functions such as packet routing, queueing, or
8Note that C is typically the only programming language (apart from assembler) that is used for

Linux kernel programming.
9LARA includes a JIT compiler for just-in-time compilation (at module loading time) of active code

that is distributed in the form of source code.

CHAPTER 3. RELATED WORK 60

scheduling. A complete router configuration is defined by a directed graph whose nodes

are the elements. The arcs between the elements are called connections. They represent

a possible path for packets traversing the router. The endpoints of the connections

between elements are called ports. An element can have any number of input or output

ports.

A Click router configuration is determined at compile time. The elements are inter-

nally represented by C++ objects that are inter-linked with each other through object

references. Packet passing between functional elements is thus simply a matter of passing

memory pointers between objects.

Each element has an element class associated with it (like objects in object-oriented

programs), which determines the fundamental behaviour of the element.

Click provides two types of connection between elements: push and pull. While

a push connection simply passes packets on to the next downstream element, a pull

connection request the upstream element to return a packet. When an element receives

a packet from a push connection, it must store, discard, or forward the packet to a

connected element for further processing. Most elements forward packets by calling the

push function of the next downstream element. Since packet forwarding is just a virtual

function call, the CPU scheduler cannot suspend the processing at arbitrary points;

elements must cooperatively choose to stop the processing. In order to allow the system

to schedule different tasks, Click supports special elements, called queues. Those queues

provide the transitory storage for packets received by a module.

Click configurations are written in a simple language by specifying the elements and

the connections among these elements. The language supports constructs that allow

users to define new element classes composed from existing ones. This enables users to

build their own compound element classes.

The current Click implementation has limitations resulting from the default system

scheduler (i.e., the standard Linux scheduler), which handles the scheduling of competing

push and pull paths despite the lack of application specific semantics. Furthermore, a

notion for element types is missing. In addition to that, Click currently also misses a

static type system, which prevents configurations connecting, for example, a link-layer

element (e.g., an Ethernet interface element) directly with a transport-layer element

(i.e., TCP or UDP) rather than a network-layer element.

3.2.2.7 Router Plugins

Router Plugins [DDPP98], developed by a collaboration between ETH Zurich and Wash-

ington University, suggests a modular and extensible software architecture for next gen-

eration routers. The primary goal of this project is to build a flexible network subsystem

CHAPTER 3. RELATED WORK 61

that offers the ability to select implementations (or even instances of the same imple-

mentation) of router components, called plugins, on a “per-flow” basis. The concept of

a flow therefore plays a fundamental role, as it defines the unit of granularity by which

network services can be assembled.

Plugins are binary code modules that implement a specific extended service, such as a

special packet scheduler, a routing component, etc. They can be dynamically loaded and

unloaded into the router kernel at run-time. NetBSD, which is used as the base platform

for Router Plugins, provides appropriate kernel support to load modules into the kernel.

The Plugin Control Unit (PCU) provides the “glue” to bind individual plugins to the

network subsystem and offers a control interface to manage plugins.

For maximum flexibility, Router Plugins support the creation of multiple instances of

the same plugin, whereby an instance is a specific run-time configuration of the plugin.

This allows efficient configuration of services on a per-flow basis without the overhead

of loading multiple plugins for different configurations. Since the notion of instances

needs to be supported by the plugins themselves, developers must expose a standardised

interface to control instance creation and configuration.

The notion of a gate is used to define a “socket” in the core network subsystem where

the plugins can be “plugged in”. These gates define the points in the packet processing

chain where the flow of execution passes to an instance of a plugin. Thus, gates are

placed wherever interaction with plugins is desired. The architecture however does not

support dynamic creation of gates; they are assigned at compile time of the kernel.

The framework supplies an efficient mechanism to map individual data packets to

flows and to bind individual flows to plugin instances. Flows are specified based on packet

filters, which are defined as six-tuples including the source and destination address,

protocol, source and destination port and the incoming interface.

The Association Identification Unit (AIU) is responsible for maintaining the bindings

between flows and plugin instances. Upon receipt of a packet at a gate point, the

AIU checks based on the installed filters whether or not any plugins wish to process

the packet. Since packet classification is performed on a per gate basis, an inefficient

implementation will seriously impact performance. Hence, Router Plugins exploit two

optimisation techniques to speed-up packet classification. First, a flow lookup cache

that allows very fast lookups of packets belonging to a “cached” flow is introduced. And

second, a fast filter lookup algorithm based on Directed Acyclic Graphs (DAGs) is used

which has a worst case performance in the order of microseconds10.
10This result is based on the fact that the DAG requires a maximum of 24 memory accesses in the

worst case, and where a single memory access takes in the order of 60 ns. This leads to an upper bound

of approximately 1.4 us. Note that the processing cost required for the computation of the hash is

negligible compared to the memory accesses.

CHAPTER 3. RELATED WORK 62

Research into Router Plugins has yielded several important results. It provides not

only a flexible and programmable router platform, but also gives evidence that filter-

based, multi-stage packet classification provides a flexible means for assigning active

computation to packet flows. It also demonstrates that despite multiple classification

stages, the overall classification performance can be good if carefully designed.

3.2.2.8 Related and Subsequent Work

The Protocol Boosters [FMS+98], developed at Bellcore, aim to provide methods that

support dynamic protocol customisation in heterogeneous environments and rapid proto-

col evolution. To accomplish both of these goals, modifications have been designed which

can be transparently incorporated within existing protocols to improve (or “boost”) their

performance. These protocol boosters are designed as supporting agents that add, mod-

ify or delete protocols, but never terminate (or convert) them. They consist of one or

multiple elements. While single-element boosters interact with the “boosted” protocol

only once, multi-element boosters interact several times. Multi-element boosters have

the advantage that they can introduce additional message types/headers for the trans-

mission among the boosters. However, since message types/headers added by a booster

are unknown at the end nodes, the last booster involved in the transmission path has to

strip off this information. For example, a two-element protocol booster could introduce

forward error correction (FEC) codes to the IP protocol. The error correction codes

would be transparently added and removed by the booster without changing the IP

protocol at the end-systems. The protocol booster model suggests that protocols are

initially designed for the default case (for example, a homogeneous network) and later

be fine-tuned or tailored for specific environments (i.e., heterogeneous network) based

on booster modules.

The Active Network Node (ANN) project [DPP99] at the University of Washington

developed a scalable, high performance active network node. Like LARA (see section

3.2.2.5), ANN adopted a combination of hardware and software techniques. The de-

velopment of the router hardware follows three design principles. First, each network

port should be able to use several processing elements. Second, a close coupling be-

tween those processing elements and the network is required. And finally, the processing

power of the node must be scalable. Therefore, ANN also suggests a system com-

posed of multiple active network processing engines (ANPEs) that are interconnected

using a switched backplane. Scalability is promoted by using a load-balancing algorithm

that distributes the processing load amongst the available ANPEs. High performance

is supported through a cut-through forwarding mechanism for non-active packets and

kernel-space active packet processing. The current ANN implementation supports up to

CHAPTER 3. RELATED WORK 63

eight ports with data rates up to 2.4 Gbps. It consists of an ATM Port Interconnect

Controller (APIC), a Pentium class CPU, up to 4 GB of RAM and a field programmable

gate array (FPGA). In addition, ANN has been complemented by an active code caching

mechanism, called DAN [DP98]. The distributed code caching system has been included

to minimise the download latency for active code.

The application level active network (ALAN) system [FG99], developed at Sydney

University, introduces value added network services by means of a virtual or overlay

active network infrastructure. The system is assembled from standard IP applications

and servers connected to the Internet. Active processing “inside” the network takes

place in so-called dynamic proxy servers (DPS). The active programs, called proxylets,

act as communication proxies for data streams dispatched through the dynamic proxy

servers. Unlike typical active networking schemes, which intercept packets directly on

the forwarding path (network layer), ALAN requires the data streams to be explicitly

addressed to the proxy servers. This approach suits Web based scenarios well as the use

of HTTP proxies is a common practice in this domain and is supported by most Web

browsers. For other types of applications, however, this approach is not very practical

since active services cannot be applied in a transparent manner to the end systems

(i.e., applications or end-systems must address packets explicitly to a DPS). The current

implementation, known as FunnelWeb [Gho00], is based on Java 2. The DPS forms

the active node execution environment for proxylets. It exposes a control and monitor

interface for proxylets over Java RMI11. This out-of-band control mechanism enables

third parties to control the downloading and execution of proxylets, and to observe the

state of active proxylets. Experiences with FunnelWeb have shown that the choice of a

user-space Java execution environment is inefficient and ill suited for applications with

heavy data-plane processing requirements (for example, transcoding).

The LANode [SBSH01] active network node developed at Lancaster University strives

to be one of the first router implementations for the emerging P.1520.3 programmable IP

element architecture [B+98]. The focus of the design is to experiment with the develop-

ment of the programmable API abstractions (‘L-’ interface) and service control features

(‘L+’ interface) that are defined by the architecture. The LANode architecture divides

the router into two planes: the active control plane (ACP) and the active data plane

(ADP). All control functionality that is off the data path and not directly concerned with

packet forwarding resides in the ACP (for example, code loading and service composi-

tion). This separation has a direct impact on the programmability of the node. On the

one hand, data plane functionality in LANode is implemented in form of Linux kernel

modules, since the LARA active router kernel (see section 3.2.2.5) has been adopted as

the programming environment for the ADP. Such ADP modules expose an ‘L-’ interface
11Remote method invocation (RMI) is a Java-specific RPC mechanism.

CHAPTER 3. RELATED WORK 64

to the ACP for control purposes. On the other hand, the ACP programming environ-

ment is based upon a user-space Java virtual machine, similar to the one proposed by

the ALAN (or FunnelWeb) system described above. The active control interfaces used

for programming or configuring the forwarding behaviour are thus implemented in the

form of Java proxylets. These proxylets expose a ‘L+’ interface through a CORBA/IIOP

middleware infrastructure to facilitate control and management of the node as well as

associated active applications through independent third-parties.

3.2.3 Comparison of the Integrated and Discrete Approach

Integrated active network solutions typically suffer from loss of performance due to the

high costs involved in providing safety and security on a per-packet basis. In an effort

to reduce this burden, custom programming languages that restrict the functionality of

active programs to simple tasks (for example, configuration or control) were developed.

This approach, however, counteracts to some degree the principal objective of active

networks, namely to support flexible network programmability.

The discrete approach to active networks, by contrast, circumvents this performance

problem because heavy-weight security operations usually occur only during program

set-up. It has been shown that dynamic (or on-demand) code distribution mechanisms

can be beneficial for discrete solutions in order to preserve maximum flexibility. Un-

fortunately, on-demand loading of active extensions inevitably introduces extra latency

during loading of the programs up-front. In view of that, it has been demonstrated

that code caching schemes can be very valuable, as they greatly reduce loading delays.

The fact that programming takes place out-of-band prohibits fine-grain programmability

(i.e., on a per-packet basis), albeit there is no evidence that programmability of such

granularity is required. Out-of-band code distribution approaches do not limit active

programming in terms of code size or loading time.

In order to benefit from the features of both approaches, namely flexibility, usability,

security and performance, a combination of both ideas seems to be most attractive. A

common way of integration is based on a layered architecture. The discrete approach

supporting flexible programmability at the bottom layer can satisfactorily provide an

integrated solution offering fine-grain programmability at the top layer. For example,

the SwitchWare architecture (see section 3.2.2.1) layers the PLAN execution environment

(integrated approach) on top of the ActiveBridge (discrete approach).

Another way of integrating the best of both approaches is by providing a modular or

component-based programmable environment that supports fast module loading and at

the same time provides flexible extension and integration mechanisms for modules. This

approach is at least to some extent pursued within Bowman and CANEs (see section

CHAPTER 3. RELATED WORK 65

3.2.2.3), Router Plugins (see section 3.2.2.7) and Click (see section 3.2.2.6), and is also

one of the primary goals in the work presented here.

3.3 Enabling Technologies

Active networks encompass a large variety of mechanisms and technologies ranging from

operating systems techniques such as memory protection, resource control and system in-

terfaces – over communication systems comprising network protocols and routing mech-

anisms – to software engineering techniques for mobile code. Furthermore, safety and

security mechanisms must be considered as a fundamental aspect in those areas due to

the vulnerable nature of network systems and mobile code execution.

The challenge of active network research is to bring these diverse technologies to-

gether in order to construct systems solutions that enable flexible network programma-

bility without compromising any of the fundamental features of network systems (i.e.,

performance, security, reliability). An analysis of the development of active networks has

shown that advances of these technologies led to a continuous evolution in the develop-

ment of active network systems. For example, the progress of mobile code technologies

has notably influenced and advanced the developments in network programming.

The remainder of this section introduces a number of operating systems and support

technologies as well as safety and security mechanisms that have proven to be useful for

building active network solutions.

3.3.1 Operating System Support

Although operating systems do not seem to have evolved much in the last decade – they

still perform the same basic tasks, namely hardware abstraction, resource partitioning

and protection, and access control functionality – some of the recent advances have

proved to be important for active networks. These advances concern mainly system

design rather than its functionality (for example, the modular approach of micro-kernels

and the adoption of software engineering techniques).

In recent years, a number of specialised operating systems that explicitly targeted

programmable and network devices have been developed in research laboratories. Several

of these systems, which have particularly been used within active network research, are

described in the following sections.

Finally, another recent advancement in operating system design is the appearance of

dynamic extensibility support, which will be further explored in section 3.3.1.6.

CHAPTER 3. RELATED WORK 66

3.3.1.1 Scout

Scout [MMO+94] is a communication-oriented, configurable operating system developed

at the University of Arizona. Scout OS12 is composed of low-level communication prim-

itives, customised for the purpose of a particular kernel.

Configurability of Scout is done in units of modules. Each Scout module provides a

well-defined and self-contained functionality. Typical examples of modules are network-

ing protocols, such as IP, UDP, or TCP. A complete kernel configuration is formed by

connecting individual modules into a module graph. Such a configuration is defined at

build time, and a number of configuration tools assemble the selected modules into a

Scout kernel. As a result, Scout enables flexible configuration of customised kernels for

network-attached devices and routers (for example, active routers). For example, the

Joust system introduced earlier is simply a Scout configuration that includes a module,

which implements the Joust execution environment, along with underlying services, such

as IP, TCP, etc.

In addition, Scout provides a communication-oriented abstraction (path) to provide

a more fine-grained means to configure the behaviour for individual flows at run-time.

A path can be thought of as a logical channel through the module graph over which I/O

data flows. It is defined by a sequence of modules that are applied to the data as it

passes through the system.

3.3.1.2 Pronto

The Pronto platform [Hj00], developed at AT&T Laboratories, claims to provide a com-

mercial strength platform to support active network research in general. It is hoped that

the platform provides a universal solution, which can be used by many institutions as

the base building block for their active network research.

A user-level library provides a programming interface to access generic kernel-level

active node services and to interface with the forwarding path. The architecture does not

impose a specific programming model or execution environment; instead it is execution

environment independent and facilitates adoption of new execution environments.

A unique feature of the Pronto platform is that it supports four different models of

interaction with the data plane:

• Programmable control-plane mode: Active applications are only given access to

control-plane functionality

• Data-plane peeking mode: Active applications are able to snoop packets and queues

in the data-plane but cannot alter those packets.
12Currently available as a native (stand-alone) system for Intel Pentium and Digital Alpha processors.

CHAPTER 3. RELATED WORK 67

• Local multicast mode: Packets are both processed by the normal forwarding engine

and relevant active applications running in user-level execution environments. The

packet duplicates that are “multicasted” to the active programs for processing may

be altered.

• Programmable data-plane mode: Active applications execute directly upon every

packet in the data path. This mode is computationally the most expensive one

due to the high cost of executing user-level code on every packet.

Due to the interaction limitations with the data plane in the first three approaches, it

can be argued that only the last provides sufficient flexibility for generic active network

programmability. Unfortunately this model is the least efficient one since every packet

must be first copied to user-space before the active processing can take place and then

back to kernel-space upon completion.

The Pronto implementation is built around the Linux operating system. It is mainly

based on the Linux module model and thus requires only a number of small changes to

the Linux kernel. Since Pronto is otherwise based on “standard” Linux, an off-the-shelf

Java VM can be adopted as the execution environment. Furthermore, this enables the

platform to take advantage of the well-maintained process, memory, thread and file-

system support, and the wealth of freely available compilers, debuggers and software

libraries.

3.3.1.3 OSKit and Janos

The OSKit [OSK] developed as part of the Flux group at the University of Utah is a

framework and set of modularised code libraries which aims to facilitate the construction

of new operating systems. For example, Janos [THL01] – a Java-based active network

NodeOS – is currently under development based on this framework.

Active network and mobile code research at Utah [BH99] has shown that systems us-

ing user-level software mechanisms for protection such as the Java VM are not sufficient

to offer safety for concurrent program execution (for example, several mobile code mod-

ules running in an active router). Instead, a clear separation between kernel and user

space privilege levels is required. For example, systems that use type-safe languages for

extensibility [BCE+94] and language run-time systems [HCC+98, TL98] to enforce pro-

tection usually lack the implementation of process termination, enforcement of resource

control, and safe inter-process communication.

As a result of these limitations, Back et al. started the development of Janos, a

specialised Java OS with support for resource control, safe inter-process communication

and process termination. Janos takes advantage of the OSKit component library and

Kaffe [BTS+98] – a multi-process Java virtual machine. Kaffe introduces a process

CHAPTER 3. RELATED WORK 68

abstraction and a clean separation line between kernel and user space concerns in Java.

This separation made feasible the implementation of the added functionality within

Janos.

3.3.1.4 Genesis Kernel

The Genesis Kernel [CDK+99] developed at Columbia University supports spawning of

virtual networks on-the-fly. Spawned networks inherit architectural components from

their parent networks, but enable refinement of their operation. For example, a Cellular

IP [CGK+00] network (child) can be spawned from a standard IP network (parent)

in order to overcome the high handoff latencies present within Mobile IP [Per96]. The

proposed architecture is generic in that architectures can be built, for example, to spawn

virtual active networks.

Genesis supports spawning of virtual networks on three levels. At the lowest level,

a transport environment delivers packets through a set of open programmable virtual

nodes, called routelets. Routelets represent virtual layer-3 routers of distinct virtual net-

works. The Genesis Kernel, providing the execution environment for the virtual routers,

exposes a programmable interface to the control algorithms (for example, routing) of

each routelet. The intermediate level enables control of routelets through a separate

programming environment for each virtual network kernel. The top level provides an

open programmable interface, called the binding interface base. It offers access to a set

of routelets and virtual links that constitute a virtual network.

3.3.1.5 SPIN

At the University of Washington, Bershad et al. have developed SPIN [BCE+94], an

extensible general-purpose operating system. SPIN allows applications to safely add sys-

tem extensions to the kernel and adapt the interface to the operating system accordingly.

These extensions allow an application to specialise the underlying operating system in

order to achieve a particular level of performance and functionality.

SPIN extensions are written in a type-safe language, and are dynamically linked into

the operating system kernel. This approach enables dynamic extensibility of the oper-

ating system functionality without compromising the security of the core system code.

SPIN and its extensions are written in Modula-3 and run on DEC Alpha workstations.

CHAPTER 3. RELATED WORK 69

3.3.1.6 Dynamic Kernel Extensibility

Many commodity operating systems such as Linux, NetBSD, or FreeBSD have recently13

been enhanced with support for dynamically loadable kernel modules that allow the ker-

nel to be augmented with additional functionality at run-time. The idea is to modularise

the kernel so that only the required functionality at any given point in time must be

loaded into memory. For example, a plug-able device such as a particular PCMCIA

network card that might be used rarely does not need a driver for the device to be

permanently compiled into the kernel image. Instead, the respective device driver can

be dynamic loaded at run-time when needed (in form of a kernel module) and unloaded

when unused.

This technology has proven to be very useful in the context of active network im-

plementation. The module approach provides a clean separation between value-added

functionalities such as special device support or active services, and the core functional-

ity of the kernel. The fact that kernel modules can be dynamically inserted and removed

at run-time without affecting the rest of the system (if the module is well-behaved) in-

troduces a degree of safety and reliability. This allows, for example, an active NodeOS

to re-initialise or remove an active module that misbehaves without disruption of the

entire system operation. Therefore, it is not surprising that dynamic kernel extensibility

based on loadable modules has formed a key building block within several active network

implementations. For example, it has been deployed within LARA, Router Plugins and

Pronto (see previous sections) as a means to dynamically load and run trusted active

extensions inside the kernel.

Although Microsoft’s Windows NT, 2000 and XP platforms do not support kernel

extensibility by means of loadable modules, the Windows Driver Model (WDM) [One99]

enables dynamic loading of drivers and execution of such extensions in kernel-space in-

stead. Since the WDM is more general than only for writing device drivers, this technique

can be deployed under Windows to dynamically extent kernel functionality in much the

same way as with the previously mentioned modular kernel architectures. It is shown

later in chapter 6 how this approach is applied in the Windows 2000 implementation of

LARA++.

3.3.2 Safety and Security Mechanisms

According to section 2.8, the main focus for providing safety and security within active

networks is the safe execution of active code, and the secure control of resource usage and

access to privileged operations such as system configurations. This maps to the following
13Modular kernel extensions have been introduced by several operating systems in 1994/95 (for exam-

ple, NetBSD before version 1.0 release, or Linux since kernel version 1.2).

CHAPTER 3. RELATED WORK 70

requirements: (1) a safe execution environment (for example, a sandbox) and/or methods

for static analysis of active code in order to verify safety prior to program evaluation (for

example, type safety); (2) authentication mechanisms to securely verify users identity

and code authenticity (for example, public key and code signing mechanisms); and (3)

secure access control mechanisms to safeguard privileged interfaces and control resource

usage. Most of these mechanisms can be implemented either implicitly or explicitly.

For example, safe code execution could be simply based on code interpretation, and

resource control could be neglected if fixed resource bounds are enforced by the execution

environment. Also, user authentication could become superfluous if the system does not

support user-based privilege levels. The remainder of this section describes related work

which focuses primarily on the safety and security aspects of active networks.

Shapiro et al. [SMSF97] suggest the use of the Extremely Reliable Operating Sys-

tem (EROS) for providing safety for active code execution. A code certification mech-

anism is supplied for the authentication of injected programs. Safe code evaluation is

achieved through isolation and control of the execution environment for every applica-

tion. Moreover, their system proposes resource allocation control based on the concept

of capabilities.

RCANE [Men99] developed at Cambridge University proposes a resource control

framework for active networks. Router resources such as CPU, memory and bandwidth

have to be restricted to prevent malicious active programs from causing denial-of-service

attacks. RCANE is based on the OCaml [OCA] run-time environment and the PLAN in-

terpreter to provide a restricted execution environment. Security techniques approached

by the framework include resource accounting and scheduling (i.e., CPU and network

input/output), memory and service management functions (for service creation and ma-

nipulation), and session authentication (i.e., the owner of a session must be authenti-

cated).

PLAN-P, proposed by Thibault et al. [TCM98], extends PLAN (see section 3.2.1.2)

to a generalised active network programming language running over IP. It provides en-

hanced programmability while maintaining safety and security. For example, PLAN-P

guarantees program delivery and termination. PLAN-P was designed with the aim to

improve performance compared to its predecessor. This is achieved through program

specialisation. The idea here is to specialise the interpreter/compiler according to the

input PLAN-P program at run-time. Performance measurements show that this tech-

nique approximately doubled the speed. PLAN-P has been successfully demonstrated

for adaptation of distributed applications in extensible networks [TMM99].

SafetyNet [WJGO98], developed at Sussex University, addresses the safety and se-

curity issues of active networks at the language level. Wakeman et al. propose to design

security policies that protect the integrity of an active network into the type system of a

CHAPTER 3. RELATED WORK 71

new programming language dedicated for active programming. The language is strongly

typed such that any form of run-time checks required by other languages (for example,

Java) can be avoided. SafetyNet also provides a formal model of the active network

language which shows the correctness of the type systems and the safety policies. This

enables the system to ensure that programs passing the type-check totally conform with

the policies.

Yeh et al. [YCN99] have pursued research into the interoperability issues of secu-

rity policies for end-to-end communication when different administrative domains are

involved. Their work proposes a dedicated signalling and path repair mechanism for

connection-oriented active network sessions. The path repair mechanism is needed to

setup quickly an alternative path when a path failure is detected by the nearest router. A

path failure is typically caused either due to congestion on a link or a change in security

conditions.

Finally, the reader is also referred to the numerous systems and architectures pre-

viously presented throughout this chapter for further information on the safety and

security measures used within active networks, such as SANE (section 3.2.2.1), PLAN

(section 3.2.1.2), SNAP (section 3.2.1.4) and Janos (section 3.3.1.3).

3.4 Applications and Services

The potential of active networks in solving problems of today’s networks (as previously

discussed in chapter 1) as well as allowing them to support new types of applications and

services is still overlooked by many researchers and industry. The successful deployment

of active networks relies on the development of genuine applications and services that

demonstrate the potential of active networks to its depth. Fortunately, there is currently

an increasing interest in the active network research community to work on applications

and services that will benefit from additional computation and/or state in the network.

Although the design and development of the ‘perfect’ active network system is yet under

way (novel prototype active network systems are still emerging, and existing platforms

are continuously enhanced), many systems are already being used within experimental

networks to develop and test applications. For example, the ABone [BR99] is a repre-

sentative example of such an experimental testbed network. The active overlay network

enables testing of different execution environments and active applications across re-

search labs.

The remainder of this section introduces a range of applications and services that

are currently under investigation within the active network community. These example

applications and services can be divided into the following areas:

CHAPTER 3. RELATED WORK 72

Packet Forwarding and Routing

Active network applications of this type exploit the capabilities of active nodes to support

custom processing of data flows. The programming interface offered by the nodes allow

users to implement special algorithms for packet routing and to define custom forward-

ing behaviours. Work in this area comprises the following projects: reliable multicast

such as the active reliable multicast (ARM) developed at MIT [LGT98]; ICSI’s robust

multicast audio and layered multicast video protocol [B+97]; application-layer multicast

as investigated by the Alpine project at Lancaster [MCH01]; application-specific routing

[HMA+99]; and handoff optimisation for Mobile IPv6 [SFSS00a] (see section 7.3.1.3).

Protocol Deployment

Support for dynamic deployment of new functionality throughout the network is un-

doubtedly the strongest drive for active networking. It opens up the network and allows

third-parties to roll out new services and protocols dynamically within a very short time.

Instead of being held back by lengthy standardisation processes and router development

cycles, new protocols can be dynamically tested and deployed right after the development

phase (or even as part of it). Example applications are the active bridging project at the

University of Pennsylvania [ASNS97] and the active multicast network (AMnet) project

at the University of Karlsruhe (Germany) [MHWZ99]. The latter provides heterogeneous

group communication services based on dynamic protocol and service deployment. Fur-

thermore, Legedza et al. [LWG98] studied the opportunities for end-to-end performance

improvements of distributed applications as a result of active protocol deployment.

Network Signalling

Research at USC Information Sciences Institute (ISI) explores the feasibility of exploiting

active network technologies for network signalling [Lin00]. A special execution environ-

ment for signalling, the active signalling protocol (ASP) EE [BCF+01], has been devel-

oped to explore the potential of active networks for on-the-fly deployment of network pro-

tocols and management software, and dynamic customisation of the network. Initially,

the project focuses on well-known signalling protocols, such as resource reservation, al-

ternate path-routing, and dynamic provisioning of differentiated services. For example, a

Java-based implementation of the resource reservation protocol (RSVP) [BZB+97] was

developed. The Java-based implementation (Jrsvp [B+01]) ensures portability across

different active node platforms and enables dynamic extensibility of the base protocol

through active network techniques. These features have been demonstrated by starting

off with a basic version of the reservation protocol, which has been enhanced by means

of a dynamic loading mechanism at run-time.

CHAPTER 3. RELATED WORK 73

Congestion Control

Network congestion control is another area in which active networking can be benefi-

cial. Research at the Georgia Institute of Technology [BCZ96] proposes an intelligent

frame dropping mechanism that reduces congestion inside the network at the point of

occurrence rather than through rate control at the end systems. Since congestion occurs

inside the network, usually far away from the actual applications that cause the conges-

tion, congestion control inside the network (where the congestion occurs) exemplifies an

excellent application for active networking.

Network Management

Network management has also shown to be a very convincing application domain for

active networks. While management systems of traditional networks use polling as a

means to periodically acquire status information from the network nodes (for example,

to check on smooth operation of the network) [Mar94], active networks enable dele-

gation of management tasks to active programs that report failures immediately upon

detection (as an event driven approach). In contrast to the former approach, which

is ineffective as repeated polling leads to increased bandwidth usage and undetected

failures until the next poll takes place, the latter is highly efficient (i.e., bandwidth is

only used when necessary) and responsive (i.e., events are immediately reported). In

addition, active programs running locally on the network node that is monitored can

exploit all information available at the point of failure in order to derive a meaningful

report (i.e., additional requests from the management system may not be needed) and/or

take immediate actions to resolve critical problems if appropriate. A range of research

projects have emerged in this area including the SmartPackets project at BBN [SJS+00],

Columbia’s work on network management by delegation [GY98], and the Darwin project

at CMU [C+98].

Data Caching and Storage

Data caching and storage ‘inside’ the network is an example of a totally new application

domain. Unlike conventional caching and storage applications, which are implemented

within specialised end-nodes, active networks enable data storage within the actual net-

work nodes. Examples of caching applications are the self-organising wide-area network

cache developed at Georgia Tech [BCZ98], the dynamic RAM-based network-level cache

for high quality video built at Lancaster University [RWS00], and the distributed Web

caching, which transparently redirects Web requests to nearby caches, developed at MIT

[LG98]. Research at Carnegie Mellon University, by comparison, investigates the inte-

gration of storage technologies with active networking [Rie99] in order to provide a whole

CHAPTER 3. RELATED WORK 74

end-to-end computing infrastructure. The challenge of network-side data caching is to

intelligently partition functionality between clients, network storage and active nodes

such that performance, reliability, and scalability of the service is optimal.

Value Added Service

Recent developments show that service support demands of today’s networks increase

both in quantity and complexity. As active and programmable networks provide suffi-

cient flexibility to deploy not only conventional network level services (such as routing or

forwarding), but also enhanced services on higher layers of the OSI reference model that

can be tailored towards individual applications and/or users, they are suitable to cope

with this demand. Examples of value added services based on active and programmable

networks include packet filtering and firewalls [AR94], active email [GBB+01], active

content distribution [MF01], distributed on-line auctions [LWG98], and network-level

access control for public wireless networks (see section 7.3.1.3 for further details). These

examples suggest only a small sample of potential services, which clearly widen the

spectrum of traditional network services.

3.5 Summary

This chapter has introduced selected work and developments across the broad spectrum

of active and programmable network research. It provides a comprehensive overview

of the state-of-the-art in the field and exhibits a number of open problems that drive

continuous research into active networks. The various projects described throughout

this chapter introduce the relevant aspects of active networking including code distribu-

tion and loading techniques for mobile code, safe execution of active code, specialised

programming languages and compilers, operating system support, safety and security

measures, and novel network architectures.

At the core of this chapter is the division of active and programmable technologies in

two main approaches, namely integrated and discrete active networking. Although their

fundamental goals are identical and the timescale when they have emerged is related,

the underlying technologies are inherently different. While the former aims to “open up

the network” by providing a programmable interface for transient in-band active packet

code, the latter aims to do this through support of persistent out-of-band programmable

extensions.

The discussion of several representative projects for each approach has revealed the

advantages and disadvantages as well as their limitations. It has become clear that the

active packet approach to active networks is primarily useful for network signalling and

control as the programming capabilities are fairly fine-grained and restrictive, whereas

CHAPTER 3. RELATED WORK 75

active extensions enable much more fundamental and coarse extensibility of network

capabilities (i.e., they are far less constrained regarding program complexity and service

lifetime). They can even support the deployment of an active packet based programming

environment across an active network (compare section 3.2.2.1).

In accordance with a study by Hicks and Nettles [HN00], the analysis of current

active network approaches presented in this chapter comes to the conclusion that the

majority of today’s active network systems do not provide sufficient extensibility for

future network evolution. They lack a service composition method that allows for ex-

tensibility at run-time. In other words, extensibility is limited unnecessarily by assuming

a static underlying graph structure or program that cannot be changed or extended at

run-time without recompiling, reinstalling, or reconfiguring the active node. This weak-

ness was the main source of motivation for the development of yet another active node

architecture.

The diversity of system requirements for active networks is reflected in the large

range of projects described throughout this chapter. Common requirements that are in-

vestigated by most active network solutions are flexibility, adequate performance, safety

and security. The following chapter discusses the whole gamut of the system require-

ments indicated in this chapter and attempts to classify the variety of requirements into

stringent and less-stringent requirements.

Chapter 4

Active Network Requirements

4.1 Overview

This chapter discusses the requirements for active networks in general and derives the

specific requirements for the LARA++ active router architecture that is proposed within

this work (see chapter 5).

Most common requirements of an active network have already been mentioned in

the last chapter. It has become apparent that active network research deals largely with

trade-offs. For example, many of the active systems introduced in chapter 3 trade-off

system security for performance or flexibility for simplicity.

Research into active networks so far has shown that no single solution will meet

all possible requirements of active networks, and thus, multiple systems for domains

with different demands must be able to co-exist and interoperate. The challenge in

designing active network solutions therefore is to draw the optimal line between trade-

offs depending on the requirements at hand. For this, it is crucial to understand fully the

requirements of a given domain (for example, an active router designed for core networks

has totally different performance requirements from an edge router).

4.2 Requirements

The general requirements for active networks can be divided into two categories, namely

those that are fundamental to an active network architecture and those that enable

enhanced features. This section therefore introduces the following categories:

1. Class A requirements encompass all requirements without which a solution would

either not classify as an active network or lack feasibility to deploy in real environ-

ments:

76

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 77

Class / No Requirements

A.1 Programmability

A.2 Flexibility

A.3 Safety

A.4 Security

A.5 Resource Control

A.6 Adequate Performance

A.7 Sufficient Manageability

2. Class B requirements include those requirements that are commonly considered to

be valuable for active networks and those that will become crucial for large-scale

active network deployments:

Class / No Requirements

B.1 Interoperability

B.2 High Performance

B.3 Scalable Manageability

B.4 Business Model

B.5 QoS Support

The remainder of this section describes these requirements in depth and explains their

significance in more detail. Relevant active network research (previously introduced in

chapter 3) will be cited when appropriate in order to show how those requirements are

dealt with by others.

4.2.1 Class A Requirements

4.2.1.1 Programmability

The primary requirement of an active network is by definition programmability. In order

to qualify as an active network, network nodes require at least some form of programming

interface that permits users to remotely control or program the network (i.e., forwarding

behaviour, management operation, etc.).

As we have seen in chapter 2 and 3, different programming models (discrete or

integrated), program distribution approaches (in-band or out-of-band), programming

languages (for example, PLAN, Java, and Caml), and network APIs have evolved – all

with the one goal, namely to enable network programmability.

Network programmability as suggested by active networks requires mechanisms to

dynamically download, securely authorise, and safely evaluate mobile code on network

nodes. The different approaches presented in chapter 3 demonstrate that the choice of

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 78

programming model and implementation has a great impact on the overall performance

of the active node.

Key to active programmability is the choice of the programming model and execu-

tion environment. Depending on the application domain at hand, it has to be decided

whether in-band active code distribution and execution is advantageous over out-of-band

programming and what kind of execution environment (i.e., code evaluation in kernel

or user-space; or code evaluation through interpretation or execution) is preferred. As

these decisions are fundamental for the implementation of an active node, they have far

reaching consequences. For example, in-band active code distribution limits the archi-

tecture to fairly small active programs, while out-of-band programmability is typically

far less dynamic.

4.2.1.2 Flexibility

Flexibility is, like programmability, a fundamental property of active networks. For a

particular active node architecture the question to be asked therefore is what degree of

flexibility is required for the given application domain? The requirements of flexibility

and programmability are closely related. In fact, the choice of programming model

determines to some degree how flexible a system can be.

Active network approaches that choose high flexibility as a key requirement typically

attempt to provide a general-purpose (or Turing complete) programming environment.

Examples described in chapter 3 that follow this line are ANTS, CANEs, and LARA.

However, as other research has indicated, providing a high degree of flexibility typically

results in complex programming environments, which are hard to secure. PLAN, for

example, is an approach that sacrifices flexibility in order to achieve a lightweight pro-

gramming environment. Projects that concentrate on a particular application domain

(for example, SmartPackets only support network management operations, and Pro-

tocol Boosters focus on protocol customisation) typically restrict the flexibility of the

programming environment in order to simplify safety and security procedures.

Finally, an analysis of different programming interfaces has shown that flexibility in

a programmable environment (independent of its degree, but more importantly for high

levels of flexibility) must be constrained to useful programming abstractions in order to

provide developers with a practical API. For example, without special APIs to process

network packets (i.e., receive, send, fragment, etc.) or deal with security (i.e., user

authentication, access control capabilities, etc.), it can be very expensive to program

active code.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 79

4.2.1.3 Safety

Safety within active networks is primarily concerned with the reliability of the active

nodes. It ensures that active code loaded on an active node executes safely without

causing the system to malfunction. Safety and reliability of active network nodes are

particularly important, as the consequences of a system failure can be far reaching –

beyond the scope of the user or active program that caused the problem. In fact,

erroneous behaviour on a shared network device may impair many users or take down

the whole network node.

As network users typically do not tolerate degradation of service reliability with the

advent of new technologies, safety is another vital requirement for active networks. The

challenge here is to offer a similar level of reliability to that known from conventional

networks despite the fact that active network nodes execute user-defined mobile code as

part of their normal operation, which makes them far more vulnerable.

Given the importance of this property, most active network architectures consider

safety as an integral element of their design. However, it has been shown in the previous

chapter that different approaches to ensure safety have been favoured. (a) Some ap-

proaches provide safety for active computation based on safe code evaluation by means

of a virtual machine or interpreter. For example, Java based systems such as ANTS

provide safety based on the Java virtual machine; PLAN is an example of an interpreted

language. (b) Others, for example Bowman or LARA1, exploit operating system mech-

anisms such as virtual memory and multi-tasking to ensure safety. This latter approach

has the advantage that the system has low-level control over the active processing and no

additional overheads occur because of an extra layer (i.e., virtual machine or interpreter)

on top of the node OS. It also allows hardware support offered by most modern pro-

cessors to be exploited for efficient protection. The downside of operating system-based

techniques is the complexity involved. Developing such systems is far more challenging.

(c)Recently, a third approach based on specialised programming languages has emerged.

The idea here is to exploit language features to ensure safety. Examples of such solu-

tions are Caml as used within SwitchWare and SafetyNet. The advantage is that safety

is more or less embedded into the active programs themselves, but typically at the cost

of reduced performance during execution. In a way similar to the first solution, however,

this approach usually lacks control in the case of unexpected failures of the language

run-time system or virtual machine respectively.
1Note that LARA provides only partial safety (i.e., protection of the processing resources) based on

a specialised kernel-space active thread scheduler.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 80

4.2.1.4 Security

The recent emergence of network and transport level security mechanisms, such as IPSec

[KA98] and SSL [SSL], is an indication of the importance of security within today’s net-

works. In the context of active networks, security must demand at least as much atten-

tion considering the extra capabilities and complexity. The challenge for active networks

therefore is to maintain an equivalent level of security as in conventional networks while

enabling flexible programmability for network users (potentially even unauthenticated

users) at run-time .

The fact that active network nodes expose some form of a programming interface,

which allows remote users to customise the packet processing path or extend the node

functionality, calls for strong security mechanisms. The administrators of an active

network must be able to securely control who can program the active nodes and to what

extent (for example, which programming interfaces or node configurations user-provided

active code can access, and how many resources these programs can consume).

As we have seen in previous chapters, security is a key topic within active network

research. Many active network projects take security very seriously. SANE, for example,

is an active network architecture that is primarily concerned with security. Most projects

however simply restrict the flexibility of their architecture in order to ease security

provisioning. It is not yet clear whether or not security and flexibility is in fact a trade-

off. But more likely, it is simply more convenient to reduce the flexibility of a system in

order to reduce the complexity of developing the security mechanisms. Examples of such

projects are PLAN or SNAP. A few projects, such as PAN or ANN, even omit security

entirely (or leave it to external mechanisms), as they focus mainly on the performance

issues of active nodes.

In accordance with previous discussions, security within active networks requires

mechanisms to control access to the system (i.e., to system configurations, the code

loader, the programming interface, and system resources). This is typically done by

means of security policing (see section 2.8.2). While the security policies define who has

access to the various controls and to what extent, the enforcement engine ensures that

these policy rules are strictly obeyed at all times. In addition, a mechanism that enables

auditing a node in order to track down security problems or potential threats is useful

considering that complex security systems are always vulnerable and conceal loopholes.

4.2.1.5 Resource Control

Resource control within active networks is generally concerned with the scheduling and

provisioning of node-local resources such as storage, memory, bandwidth, and processing

resources. It ensures that active programs running on a node receive a fair (equal or

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 81

prioritised) or reserved share of the available resources.

A minimum degree of resource control is required to protect a node’s resources from

malicious users or active programs. Since resource control prevents individual programs

from starving others or even the node OS, it embodies an important aspect of safety

and security. Resource control is hence considered another vital requirement.

4.2.1.6 Adequate Performance

Performance is an important requirement in networking. In fact, it could be argued

that performance is, besides robustness, probably the foremost property of a network.

Consequently, this is equally true for active networks. Moreover, the fact that active

networks add computational overheads besides the normal forwarding intensifies the

need for good performance.

In view of this observation, it seems absurd to even consider the idea of active net-

works since current network devices are already struggling to cope with the rapidly

growing performance requirements of today’s Internet. However, before jumping to a

hasty conclusion, it is important to put this in the right perspective. In order to provide

‘adequate’ performance, it is important to consider the actual network (or network seg-

ment) of interest. For example, performing line-speed active processing on edge networks

with up to 100 Mbps has been demonstrated based on many approaches (for example,

PLAN, SmartPackets, or Protocol Boosters). In contrast, the provision of active network

solutions for core networks is a completely different issue. So far, only a few projects,

namely ANN, PAN and LARA, have aimed for high performance active routers.

Ideally, active network performance should be comparable to the performance of

traditional networks. For a general acceptance of active networks, it is vital to provide

adequate performance for the environment where the new technology will be deployed.

For example, a simple active router running a Java based execution environment in user-

space is not acceptable for core networks, where throughputs up to many Gigabits per

seconds must be processed. However, the same solution might be perfectly acceptable

as a programmable device on a small to medium sized edge network.

4.2.1.7 Sufficient Manageability

Active network solutions have been successfully demonstrated as facilitators for network

management applications. A few of them have been previously mentioned in section 3.4.

However, an active network itself demands a substantial amount of management and

administration. In fact, the move from passive to active networks brings along many

new administrative obligations that need to be addressed sufficiently in order to make

this technology a success.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 82

Manageability of active networks at the micro level is concerned with the management

of individual network nodes. As the control of active nodes is typically achieved through

some form of policing (see section 2.8.2), node manageability is mainly a matter of

managing policy rules. For example, functionality to define, add, and remove policies

for system and resource access is required.

As active networks grow beyond the boundaries of individual research labs, the issue

of global management (across multiple administrative domains) must also be addressed.

However, manageability of active networks at the macro level is yet another hurdle to

overcome. With the exception of a few projects (for example, ABone [BR99] or Alpine

[Ban01]) not much research has been carried out in this area. The main reason for

this is probably that active networking is still in its infancy and very few larger scale

experiments have been carried out. The ABone virtual active network with less than

100 registered nodes2 is still the largest scale deployment of an active network.

Nevertheless, for the general acceptance of active networks, it is crucial to provide

sufficient manageability that enables a smooth roll-out of the technology. This implies,

for example, that mechanisms are in place to conveniently deal with a moderate to

large user base. With respect to the user management, for example, it would be utterly

impractical to tie security or resource access policies only to individual user accounts

[Ber00]. Rather, mechanisms to aggregate users into user groups (for example, net-

work administrators, privileged users, all or unauthorised users) and associate policies

to user groups must be considered in order to reduce the management overhead of active

networks.

4.2.2 Class B Requirements

4.2.2.1 Interoperability

As active network solutions are accepted and deployed more widely, interoperability

among the different active network systems and applications becomes important.

Early work in active networks [VRLC97] has already recognised that the range of

potential applications is too large for a single architecture to satisfy sufficiently all their

requirements. Clearly, an application that extends the network by uploading a new

network protocol has entirely different demands from a network management applica-

tion. Thus, depending on the problem domain at hand, different programming models

(programming languages and interfaces) and code distribution mechanisms (in-band or

out-of-band) are best suitable. It is therefore crucial as active networks are deployed

beyond research networks that different active network architectures, tailored towards
2According to a report of the ABone Coordination Center at http://www.isi.edu/abone/abocc.html

in August 2002

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 83

certain types of applications, can co-exist and interoperate in the global network.

Interoperability among active network architectures and applications provides end-

users with the flexibility to select the most appropriate service relative to their current

needs. Early active network research proposed two protocols, namely ANEP [A+97] and

ANON [Tsc99] to support interoperability among different active network nodes and

solutions.

Furthermore, interoperability within active networks is not only an issue of enabling

different active network approaches to interoperate, but also about considering the prob-

lem of unsolicited interactions among active programs and services running on a single

system. This type of interoperability is still largely underestimated, as no wide-scale

deployment of active networks has been carried out yet. But it is expected that the

increase in flexibility as a result of using active networks leaves a massive feature inter-

action problem behind that needs to be solved as active networks evolve.

4.2.2.2 High Performance

When active network solutions in today’s research labs and small-scale edge networks

will have proven to be a successful evolution of passive networks, they will certainly

gain a more general acceptance among network vendors and service providers. This will

probably initiate a larger-scale deployment of the new technology. However, for this to

be successful, active network solutions must be scalable in performance towards large

amounts of traffic. Although users and service providers would probably accept a small

drop in performance for a significant increase in flexibility and functionality, they would

reject the technology if the network became too slow.

While current active networks are primarily used by researchers and possibly a few

test users, a wider deployment would drastically increase the user base and consequently

the throughput requirements for these network devices. The challenge will be to accom-

modate the additional overheads caused by active computations and continue processing

packets at speeds approaching the line speeds of the surrounding networks. As previ-

ously shown, it is absolutely vital for active networks to support adequate performance

for a given environment.

Finally, high-speed active network nodes suitable for high-throughput core networks

may become of interest in order to provide programmability through all parts of the

network – from the core to the edge. Although current research implementations of

active network systems are still far away from providing performances close to that

required by today’s core networks, research at the University of Washington (see section

3.2.2.8) and Lancaster University (see section 3.2.2.5) already investigate scalable, high-

performance active network architectures.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 84

4.2.2.3 Scalable Manageability

Active network solutions demand scalable mechanisms for management and administra-

tion when widely deployed across large inter-networks.

The challenge will be to administer large numbers of active programs and users

across the whole inter-network. For example, a global naming scheme for active code

and users or appropriate mappings between different domains, and adequate aggregation

mechanisms (i.e., user groups, privilege levels) will be compulsory. Furthermore, the

definition and distribution of security and resource access policies across administrative

domains will demand scalable solutions.

The idea of macro-level manageability, whereby large administrative domains are

managed as a single entity, seems to be an important step towards scalable manageability

of active networks.

4.2.2.4 Business Model

A key factor as to whether or not active networks will become a real success depends on a

sound business model for the new technology. Without a promising business perspective,

network vendor and service providers will have no urge to move towards an active network

in the first place. In fact, the risk of losing some of their revenue to third parties (for

example, active service providers or active component providers) forces network vendors

and service provides to remain cautious. Such behaviour, for example, can be observed

by looking at traditional router vendors (for example, Cisco or Nortel Networks). They

show no immediate interest in active network research. Obviously, allowing third parties

to program and extent router functionality directly conflicts with the business interests

of such companies.

From this, we can conclude that a wider deployment of active networks relies very

much on a promising business model for current stakeholders and additional business

opportunities for new players in the area.

4.2.2.5 QoS Support

The issue of quality-of-service (QoS) provisioning within active networks is another long-

term requirement that becomes more and more important as the users of the shared

resources take it more seriously and the start relying on it. This effect can currently be

observed in the Internet. Since the Internet is now predominantly used for commercial

applications and services, which rely on appropriate QoS for their customers, QoS pro-

visioning has become a key issue. Efforts are currently underway to provide QoS within

the Internet, namely integrated services (IntServ) [BCS94] and differentiated services

(DiffServ) [BBC+98].

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 85

In the context of active networks, the challenge of QoS provisioning is closely related

to the problem of resource control. However, unlike resource control, which is mainly

concerned with the appropriate scheduling of resources, QoS support is a broader un-

dertaking that also involves admission control and some form of resource reservation or

class-of-service (CoS) mechanism.

QoS provisioning within active networks differs from that of conventional data net-

works primarily as the node-local processing resources in every intermediate network

node play a significant role. The interaction between node-local QoS and end-to-end

QoS yields interesting requirements. For example, an end-to-end reservation for a stream

demands node-local resource reservations for the active processing of the stream on all

active routers along the transmission path. Although the problem of mapping end-to-end

reservations onto internal QoS mechanisms is not new, in the context of active networks

the problem is intensified. Active computation, potentially within several active routers

along the transmission path, accounts for a greater share of the overall transmission time

than packet forwarding in conventional routers.

Similar to DiffServ in the Internet, soft QoS within active routers requires the ability

to define and support different service classes for active computations based on absolute

or relative QoS attributes. Likewise, hard QoS relies on the concept of resource reserva-

tion in much the same way as in IntServ. Active routers with hard QoS support therefore

require a means for resource reservation, admission control and resource scheduling. In

either case (soft or hard QoS), the active router QoS framework must define a mapping

from end-to-end resource reservations or service classes to node-local reservations or ser-

vice classes. While the mapping between soft-QoS related service classes is relatively

simple when the appropriate internal service classes are supported, the mapping between

hard-QoS reservations is less straightforward. External resource reservations can only

be granted if sufficient processing resources are available internally to the nodes along

the transmission path to perform the active computations within the given QoS bounds.

Following the example presented above, the respective active routers must be able to

reserve sufficient processing resources for every active program involved in the processing

of the stream.

4.3 LARA++ Design Requirements

The primary goal of the work presented here is to develop a generic active router archi-

tecture that can be used to design and build real active network devices. However, since

the prototyping of such systems is impeded by financial resources and time constraints

in the context of a PhD project, the objective is rather to use low-cost, commodity hard-

ware and software as a base platform and to focus on the development of a minimal, but

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 86

extensible edge router that may serve as a flexible platform for future network research.

Hence, the main challenge for the design is to come up with an architecture that scales

well from low-cost systems up to high-performance routers with specialised hardware

support.

The remainder of this section introduces the key design objectives of the LARA++

architecture and shows how these relate to the general requirements of active networks

described in the last section. Moreover, several additional, LARA++ specific require-

ments (labelled L.1, L.2, . . .) are drawn from these design goals.

4.3.1 Flexible Extensibility

In agreement with the primary goal of active networks, LARA++ strives first and fore-

most to provide maximum flexibility to allow maximum choice in terms of how the

network can be programmed and services tailored to suit the needs of user applications.

Maximum flexibility is especially of great importance since LARA++ aims to provide

a research platform that offers a high degree of flexibly for the end users and their

applications, and for future development.

Building on lessons from the development of LARA (see section 3.2.2.5), we have

learned that the ability to extend flexibly the functionality of available network proto-

cols and services is crucial. Since most applications for active networks expect merely

simple modifications or extensions to existing network protocols and services (for ex-

ample, support of a new protocol option or extension header), the ability to extend

or replace available software components flexibly, rather than having to re-implement

significant parts of the protocol stack or service every time, is important. This fea-

ture demands individual software components to provide extension interfaces, or active

routers to support flexible extension mechanisms (for example, plug-in or composition

support). The fact that many active network applications aim to modify or extend the

behaviour and functionality of current protocol suites within network nodes, leads to

the conclusion that active routers should provide an extension mechanism for existing

protocols and services. This reveals two specific requirements for LARA++: a flexible

extension mechanism and support for expandability of existing network protocols and

services.

Flexible extensibility of router functionality also demands that active programming

is not limited by language restrictions (i.e., specialised languages that are limited to

dataflow processing, small code size and/or security) and lacking programming inter-

faces (i.e., restrictive APIs or lack of support libraries). As a result, two further require-

ments for LARA++ can be derived: Turing-complete programmability and support for

interface extensibility and support libraries.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 87

4.3.2 Moderate Performance

As we have seen in section 4.2.1.6, adequate performance is a vital requirement for active

networks. However, as LARA++ strives primarily to provide maximum flexibility, which

is mainly needed at the edge of the network, adequate performance is less demanding.

An analysis of active network applications shows that in the core of the network active

processing is mainly tied to “simple” layer 3 processing, such as multicast, congestion

control, and routing. At the edge of the network, however, active applications range

from packet filtering, network access control, data compression and media conversions

to data caching and storage (for more details see section 3.4). This shows that maximum

flexibility is predominantly needed near the edge of the network (close to the user) where

performance is less crucial.

In conclusion, since LARA++ aims to provide an architecture for flexible edge de-

vices, moderate performance is adequate. LARA++ therefore strives to support active

processing at speeds approaching the line speed of typical edge networks, which equates

to speeds up to 100 Mbps today.

4.3.3 Highly Dynamic Programmability

According to the whole concept of active networking, dynamic programmability is clearly

an inherent requirement. As previously discussed in section 2.6.1 and 3.5, the code dis-

tribution approach used (in-band or out-of-band) has a great impact on the granularity

of programmability. While in-band active code distribution enables very fine-grained

programming (on a per-packet basis), out-of-band programming is usually less dynamic

and involves uploading of rather heavyweight active programs.

The choice of the active programming approach (integrated or discrete) also affects

flexibility. On the one hand, integrated programming maximises flexibility through sup-

port of fine-grain programmability, but it limits flexibility due to the hard restrictions

on code size and instantiation time. Discrete programming, on the other hand, max-

imises flexibility through unrestrictive programming, but restricts flexibility through

more coarse-grain program distribution.

Consequently, a hybrid approach that tries to consolidate the best features of both

worlds is favoured: unlimited programmability through out-of-band program distribu-

tion and highly dynamic programmability through fast program loading/instantiation.

4.3.4 Easy Usability

Usability of active networks can be viewed from the perspective of the end users who

are the actual beneficiaries of the active network, or the programmers who develop the

active programs.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 88

In order to make LARA++ a success, it is clear that the programming (i.e., code

loading and instantiation) of the network devices must be hidden from the end user’s

view. End users should not have to deal with such peculiarities; instead, the applications

should take care of setting up and configuring the active services. From a usability aspect,

the discrete approach to active programmability has the advantage that active services

can be loaded and initiated through external applications, whereas integrated solutions

rely on intrinsic support by the user applications.

From a programmer’s perspective, usability of an active network architecture is de-

fined by the programming capabilities and the ease of use. This is largely dependent on

the programming language, the APIs and library support, the execution environment

(user or kernel-space), and the debugging and testing facilities provided.

In summary, ease of use of an active network architecture from both the end user

and the programmer perspective is another important design criterion. The LARA++

architecture makes this a key design objective.

4.3.5 Safe Code Execution

In order to satisfy the vital security requirements of active networks, LARA++ must

provide security measures that protect active nodes from malicious users and their haz-

ardous code, without restricting flexible programmability for end-users. This is especially

important for active edge devices (like LARA++), where programmability is primarily

offered to the end-users of the network.

According to the discussion in section 2.8.1, there are mainly two approaches towards

safe active code execution, namely operating system and programming language-based

protection mechanisms. While the latter approach has the advantage that no special

support is required in the NodeOS, the former is favourable in cases where maximal

flexibility and reliability are required. Operating system-based safety measures do not

restrict programmability with respect to expressibility (i.e. potentially any programming

language can be used) and performance (i.e. the most suitable language can be chosen).

Furthermore, operating system-based protection is considered to be highly reliable, as it

enforces safety at run-time (i.e. it allows system protection even from program failures)

and typically makes use of the protection mechanisms supported by the system hardware.

4.3.6 Secure Programmability

Key techniques to provide security on active nodes, without compromising flexible pro-

grammability for end-users, are access control, user authentication, and code signatures.

Access policies, which form the access control list, define who has access to a node, or

in other words, which user can program the node and to what extent.

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 89

In this context, user authentication plays the important role of ensuring the integrity

of user identities. The origin of active code (i.e., the programmer or code provider) is also

considered. This can be accomplished by means of code signatures, which authenticate

the programmer or code provider, and verify the integrity of the code (i.e., make sure that

the code has not been tampered with along the transmission path). As a consequence,

the final decision of whether or not an active program is considered secure depends on

both the user loading the code and the code origin. For example, an average user may

only be allowed to install an active program signed by a trusted company, whereas a

network administrator may be permitted to install even its own programs.

4.3.7 Scalable Manageability

Scalable manageability on active nodes is mainly concerned with the handling of access

and security policies for potentially large numbers of users. It is therefore important to

introduce the concept of user groups and level-of-privilege classes as such aggregates can

greatly reduce the number of policies needed. It allows access policies to be defined on

a per-group rather than a per-user basis.

Moreover, defining a “default” group and privilege class for standard users without

special permissions should largely reduce the number of policies since the majority of

end-users will likely belong to this group or privilege class. Consequently, the use of a

default privilege class with minimal access rights (for example, to install active code that

can only operates on the user’s data streams) for unauthenticated users makes manage-

ability scalable. In summary, this practice allows limited but global programmability by

anybody without additional management cost.

4.3.8 Summary of LARA++ Requirements

The following table summarises the primary requirements of the LARA++ architecture.

These requirements have been derived from the fundamental or class A requirements of

active networks (see section 4.2.1) and tailored towards the specific design objectives of

LARA++ as described above.

Class / No Requirements

L.1 Flexible Extensibility

• Extensibility of existing protocols and services

• Support for interface and library extensibility

• Complete programmability

L.2 Moderate Performance

• Active processing near to lines speeds of typical edge networks

CHAPTER 4. ACTIVE NETWORK REQUIREMENTS 90

Class / No Requirements

L.3 Highly Dynamic Programmability

• Fast active program loading and instantiation

L.4 Easy Usability

• Convenient active “programming” for end-users

• Debugging support for active program developers

L.5 Safe Code Execution

• High reliability and performance through system-level protec-
tion mechanisms

L.6 Secure Programmability

• Flexible end-user programmability without security hazards

L.7 Scalable Manageability

• Scalability through user aggregation and default access policies

• Restrictive default privilege class for unauthenticated (un-
known) users

4.4 Summary

This chapter has examined the requirements for active networks and active node archi-

tectures in particular.

Section 4.2 discussed the general requirements for active networks and systems.

These requirements have been derived from related work and acknowledged publica-

tions in the field. They summarise the general requirements of today’s active network

solutions. A closer examination of the requirements has suggested dividing them into

two categories: those that are fundamental to the design of functional and acceptable

active network solutions, and those that will become important as active network sys-

tems get deployed on a larger scale in the future. Section 4.3 then derived the LARA++

specific requirements and tailored them according to its particular design goals, namely

to constitute a highly flexible and extensible programmable edge router. Section 4.3.8

has summarised these requirements in tabular form.

The following chapters present the design (chapter 5) and implementation (chapter

6) of the LARA++ active router architecture. Both chapters show how LARA++ fulfils

the requirements defined in this chapter by design and implementation. Finally, chapter

7 evaluates to what extent LARA++ has succeeded in meeting these requirements.

Chapter 5

The LARA++ Architecture

5.1 Overview

The actual realisation of an active network architecture has been revealed to be non-

trivial. Chapter 3 has described a large variety of active network solutions. However,

most of them are very much tailored towards a specific application or application domain.

Moreover, with the exception of very few (for example, ANTS) hardly any of these

platforms have been used outside their own research environment. The development of

a more generic active network platform therefore requires a wider and more thorough

look at the requirements. Chapter 4 has discussed the multitude of requirements and

has defined the specific requirements for the development of the Lancaster Active Router

Architecture (LARA++).

This central chapter of the work introduces the design of Lancaster’s second-genera-

tion active router architecture and discusses how it fulfils the requirements that have

been defined above in principle and design. This design chapter and the subsequent

realisation and evaluation chapters therefore contain the key contributions made in this

thesis.

The structure of this chapter is as follows: section 5.2 starts with a summary of the

motivation behind the development of the LARA++ active node architecture. Section

5.3 then summarises the background work that has been carried out a-priori as part

of the LARA project. Preceded by a brief design overview of LARA++ (section 5.4),

section 5.5 introduces the main components of the LARA++ active node architecture.

Section 5.6 then continues with a thorough description of the unique service composition

approach proposed by LARA++. Finally, a discussion on safety and security (section

5.7) and policing (section 5.8) is provided before section 5.9 concludes this chapter.

91

CHAPTER 5. THE LARA++ ARCHITECTURE 92

5.2 Motivation

The ‘killer application’ for active networking is probably the “unknown application”.

The ability to provide services that are not yet known to the device manufacturers and

system vendors at the time of network deployment is certainly considered a desirable fea-

ture of an active network. Such a degree of flexibility would enable the rapid deployment

of new services by third parties, and provide an unprecedented level of customisation by

network administrators and end users.

Although many active network services and applications require only simple modifi-

cations or extensions of existing protocol stacks and/or services (for example, to optimise

or improve the operation of a service), a study of available active network architectures

has shown that most existing platforms do not offer the degree of flexibility required

for the dynamic deployment of such services. For example, the lack of flexibility is of-

ten caused by drives for simplicity and/or performance, or as a result of targeting the

platform towards a narrow range of user applications.

Furthermore, the closer examination of extensible active router architectures has

revealed that the majority of existing platforms lack sufficient extensibility to account

for true evolution. In accordance with a study by Hicks and Nettles [HN00], the problem

has been narrowed down to: plug-in based architectures typically limit the scope of

future changes through pre-defined interfaces and an inflexible “underlying program”

(core system). Instead, true extensibility requires the the underlying program (providing

the service composite) to be minimal. For example, assuming an underlying program

with a static interface that is not necessarily suitable for the lifetime of the system

unnecessarily limits extensibility. While the needs of users are hard to predict and

hence change frequently in the fast evolving world of network communication, it is

desirable to provide a flexible composition framework with a minimal inter-component

and composition interface, but a rich general-purpose API for active computations.

Moreover, the dynamic roll-out of network protocols and services in a real environ-

ment demands a sophisticated service composition framework, which allows services from

independent users to interoperate and collaborate on the shared network nodes. Section

5.2.1 describes an example scenario for which such mechanisms are required. Unfor-

tunately, most current active network systems lack sufficient support for collaborative

service composition as they have simply been designed to prove the concept of dynamic

service provisioning, rather than for practical use.

The lack of flexibility found in current active router designs and the limited support

for collaborative service composition gave inspiration for the design and development of

a novel component-based active router architecture, which enables flexible and extensible

network programmability based on service composition. The following reference scenario

CHAPTER 5. THE LARA++ ARCHITECTURE 93

illustrates the kind of interactions among services on a single active node LARA++

intends to support.

5.2.1 An Example Scenario

Before we describe the LARA++ architecture, we outline a scenario that adequately

encompasses many of the problems of service composition. This reference scenario pre-

cipitates the desire to provide a flexible and scalable composition model as part of the

LARA++ architecture.

The scenario considers the case where both end-users and the administrator of a

corporate network want independently to program an active edge router. The admin-

istrator in this example wants to enable a simple congestion-control mechanism, which

supports differentiated classes of service based on a proprietary packet marking tech-

nique (for example, based on a new IP option). The administrator would therefore need

to upload active code onto the active router which intercepts all relevant packets in order

to apply the local congestion control algorithm. At the same time, an end user on the

corporate network may want to upload fast handoff support1 for data streams destined

to its mobile terminal (see Schmid et al. [SFSS00a] for further details). The challenge

here is to make active applications and services of various users (with different privilege

levels) co-exist and co-operate. In this scenario, this means that the congestion control

mechanism and the fast handoff service can both be active on the edge router and that

packets streamed to the end-user’s mobile device benefit from both services.

This example scenario demonstrates the type of active services LARA++ aims to

support. It also serves as a reference scenario throughout this chapter to illustrate the

problems and challenges of the LARA++ architecture.

5.3 Background Work

As the name indicates, LARA++ evolved from the LARA architecture, which was previ-

ously developed at Lancaster University. This section emphasises several LARA design

features and flaws which had a direct impact on the design of LARA++. A more general

overview of the LARA architecture has already been provided in section 3.2.2.5.

The initial drive for the LARA++ architecture arose from the results of a usability

study of LARA. The fact that LARA requires ‘active programmers’ to develop low-

level system code, which differs substantially from typical user-space programming (i.e.,

different APIs must be used, development and debugging support are minimal, etc.) and

is highly critical with respect to system failures (i.e., a program error typically leads to
1This active application temporarily optimises the routing to a mobile node’s new network location

(on the node where the route change takes place) until the mobile routing protocol converges.

CHAPTER 5. THE LARA++ ARCHITECTURE 94

a total system crash), led to the reconsideration of the original software architecture.

These usability drawbacks of LARA in conjunction with the more general limitations

of active programmability, namely the lack of flexibility for active code integration and

interaction on routers, underlined the intention of developing a new software architecture

from scratch. As discussed in more depth later, a fundamental step towards this goal

is to introduce high-level processing environments (allowing safe and easy development

of active code) and high-performance communication channels between the low-level

NodeOS and these processing environments.

The remainder of this section introduces a few further aspects of the LARA archi-

tecture, which either have had a direct impact on the LARA++ design, or have been

simply adopted by the new architecture.

One of the key contributions of the LARA architecture is its innovative hardware

architecture. LARA proposes a scalable, high-performance architecture based on inex-

pensive and off-the-shelf hardware components. The use of dedicated processing engines

on a per-interface basis provides substantial processing power and thus high-performance

for the active computation. A switched interconnect technology (for example, an ATM

network between the interface processors) enables the scalable extension of network in-

terfaces (see Figure 3.2).

LARA++, by comparison, lays the main focus on the software design of the active

router architecture. Its software architecture is designed to be largely independent of the

underlying hardware, which makes it easily adaptable to a new platform. In particular,

the design of LARA++ considers compliance with LARA’s Cerberus architecture an

important issue. However, the fact that Cerberus nodes are already distributed systems

in themselves, opens a “Pandora’s box” of new questions and issues (for example, how

to distribute state across the distributed platform, where to store and load active code,

etc). Future work on LARA++ is expected to deal with these issues and to implement

the software architecture proposed herein on a Cerberus node.

Another contribution of the LARA architecture is the concept of source code based

active program distribution and just-in-time (JIT) compilation at loading time. The

main benefit of this approach is that active programmability can be language indepen-

dent to the extent to which language specific JIT compilers and APIs are provided on

the active nodes. LARA++ extends this approach by also enabling the distribution of

binary code. This method is especially valuable in conjunction with on-demand-loading

of active code, as the request message can enclose a target platform identifier allowing

the code server to upload the correct binary format.

CHAPTER 5. THE LARA++ ARCHITECTURE 95

5.4 System Design

This section provides a high-level design overview of the LARA++ architecture describ-

ing the principal design decisions and the reasoning behind it.

5.4.1 Edge Device

LARA++ is designed as an active edge router for use in small to medium sized net-

works. Despite the fact that LARA++ has continued the work previously carried out

under LARA, the focus has shifted from developing a high-performance hardware archi-

tecture to the design of a flexible software architecture. As a consequence, LARA++

redefines the software architecture in order to promote flexibility and extensibility in the

underlying design. Although the new software architecture deals carefully with perfor-

mance critical operations and preserves basic compatibility with the Cerberus hardware

architecture, the trade-off between performance and flexibility limits LARA++ to mod-

erate performance. However, since LARA++ is primarily intended to be used within

small to medium size edge networks, moderate performance is sufficient. The second ap-

plication domain of LARA++, namely as a research platform for experimentation with

novel network protocols and services, also does not require support for high-performance.

The new software architecture has been designed independent of the underlying hard-

ware architecture. In fact, LARA++ tries to scale from single processor to multi pro-

cessor machines and from centralised to distributed router architectures. Therefore, the

software architecture accounts for deployment on a single-interface, single-processor node

as well as on the distributed Cerberus hardware architecture (see Figure 5.1).

Figure 5.1: The LARA++ software architecture is scalable from low-spec router up to
specialised high-performance hardware architectures.

Like conventional edge routers, LARA++ operates on top of the link-layer protocol.

It intercepts link-layer frames arriving on one of its interfaces and forwards them on

any other interface. Active LARA++ programs or services who indicate interest in

processing a frame that is passing through the node, receive the frame for processing.

CHAPTER 5. THE LARA++ ARCHITECTURE 96

Depending on the active application and its privilege level, it may simply process the

frame (i.e., apply some form of active computation or update router local state) and pass

the frame on for further processing, or it may decide the frame’s fate (i.e., whether the

frame is dropped or forwarded or if a special forwarding behaviour is applied) and take

the appropriate actions. Standard IPv4/v6 routing and forwarding serves as a fall-back

solution for the case where none of the active applications deal with that issue.

The advantage of this active node design is that active computation can be applied

transparently to the end-systems and applications. Conventional routers can therefore

be directly replaced with LARA++ active routers – without the loss of functionality2,

but with the prospect of flexible extensibility and programmability.

5.4.2 Programming Model

Conventional active nodes are based upon one of two programming models – either the

integrated approach, where in-band active programs are executed within the context of

specialised execution environments, or the discrete approach, which enables users to load

and execute active programs out-of-band, prior to sending the data. According to the

discussion in section 2.6.1, the former approach tends to be fairly restrictive because of

the limited programming capabilities (for example, active programs are very limited in

code size, and/or execution environments offers only a small, fixed programming inter-

face), while the latter often lacks adequate service compositing capabilities for software

components. LARA++, by contrast, tries to resolve these limitations by extending the

discrete programming model by a flexible composition framework for ‘active’ software

components. The service composition framework enables complex active programs or

services to be divided into many simple and easy to develop functional components,

which are then dynamically re-assembled or composed on the active router at run-time.

In the same way as other discrete approaches, LARA++ routers are programmed

individually through out-of-band loading and instantiation of active programs, referred

to as software components. Its composition framework allows for flexible integration of

these components on the router. Since these components are not restricted in size, they

can provide substantial extra functionality on the nodes.

Out-of-band distribution of active code also allows programmability through distri-

bution of active service ‘configurations’. Active nodes receiving such a configuration try

to load and initiate the active components required by the service from their code cache.

If the code is not yet locally cached, an on-demand code fetching mechanism (as for

example proposed by Wetherall et al. [WGT98]) takes care of loading the code from the

component’s source host or any intermediate caches. This approach can be especially
2Assuming that the base platform for our LARA++ architecture, or in other words the fall-back

solution, supports the same functionality as the replacement router.

CHAPTER 5. THE LARA++ ARCHITECTURE 97

efficient if active code is likely to be available at the active nodes.

Furthermore, the fact that LARA++ components are (unlike in-band active network

programs) not transient by nature, they can provide long-term functionality. As a conse-

quence, the LARA++ programming model also enables extensibility of the programming

capabilities of a router through provisioning of a new programming interface.

5.4.3 Component Architecture

“We are not certain what form a new model might take, but suggest that it

will be more component-based than layered.”
– Tennenhouse, 1996 [TW96]

Although Tennenhouse believed right from the beginning of his involvement in active

network research that a component-based approach is most suitable for active networks,

none of the early approaches have truly adopted a component model. The work pre-

sented here (along with the Bowman & CANEs architecture, which has evolved at the

same time), constitutes one of the first componentised active router architectures. Both

provide a flexible service composition framework that enables dynamic deployment and

creation of active services.

The logical decoupling of the underlying router platform from the “active component

software” and the implicit self-contained nature of components made this the most ap-

propriate choice for the construction of the LARA++ architecture whose principal aim

was flexibility. As such, LARA++ profits from the general advantages of component-

based design, namely code modularity, reusability and dynamic composition, to facilitate

development and deployment of custom network services.

The component architecture allows complex active programs and services to be split

into simple and easy-to-develop functional components. This ‘divide and conquer’ ap-

proach eases the component design and development, because only “small” programs

with limited functionality need to be built, and the composition of the active services

is taken care of by the composition framework. Furthermore, this modular approach

also simplifies extensibility of router functionality. Since components typically have a

well-defined and tidy component interface, dynamic extensibility and replacement of

individual components is straightforward.

Figure 5.2 provides a conceptual overview of the approach taken. The vision of the

LARA++ platform is to provide a framework upon which complete router functionality

can be provided in the form of individual components (for example, a routing component,

a filtering component, etc.), which are then composed into network services at runtime.

Composition is achieved through packet classification. Packet filters define the processing

“route” through the component environment. This allows routes appropriately tailored

to the packet type or content.

CHAPTER 5. THE LARA++ ARCHITECTURE 98

O
u
t
p
u
t

I
n
p
u
t

Passive Components
Active Components

Component Environment

Thread

Data

Packets

Figure 5.2: A Conceptual View of the Active Component Space

Finally, the extra flexibility obtained by the dynamic composition framework also

facilitates the development of customised and adaptive network services that better

meet the requirements of end-user applications.

5.5 Node Architecture

This section outlines the LARA++ active router architecture and illustrates how it

can be built on a real router platform. The subsequent sections in turn describe the

individual aspects of the architecture.

A key difficulty in designing active network systems is to allow network nodes to pro-

cess user-defined and flexibly specified programs while providing reliable network services

for everyone. Active nodes must therefore protect co-existing network protocols and ser-

vices from each other and securely control shared resources. Consequently, LARA++

applies the layered active node architecture specified by the DARPA active network-

ing group (see section 2.5). However, in order to provide safety for user-defined active

code, LARA++ extends this architecture with safe execution environments. Figure 5.3

illustrates the building blocks of this layered architecture:

The Active NodeOS provides low-level system service routines and policing support

to enable controlled access to node-local resources and system services (for example,

device configurations). It serves as a platform abstraction, thus allowing the LARA++

architecture to be implemented on many existing configurations of hardware and soft-

ware.

Three further abstractions model the conceptual architecture above the system level

of the LARA++ platform. Policy Domains (PDs) form the management units for re-

source access and security policies which are enforced on every active program executed

within the PD. Processing Environments (PEs) provide the protected environments for

the safe execution of active code. Active programs with mutual trust relationships are

CHAPTER 5. THE LARA++ ARCHITECTURE 99

Policy Domains

Active NodeOS

System
API

Processing
Environments

Active

Components

Scheduler

Figure 5.3: The layered active node architecture of LARA++

executed within the same PE. Active Components (ACs) comprise the actual active pro-

grams. They are the units of active code processed within the PEs. Active components

are executed by means of one or more LARA++ threads.

LARA++ introduces the concept of processing environments as an extra protection

layer between the active programs and the NodeOS. The idea behind the PEs is to

provide a safe execution environment for active programs of arbitrary (potentially even

malicious) source. Apart from language based safety measures, which would restrict the

system to a specific programming language, this extra level of safety can be achieved

through a number of other mechanisms previously introduced (see section 2.8.1). In

particular, we suggest the use of operating system-based safety measures (see section

2.8.1.1) as they are highly reliable and provide maximum flexibility.

The LARA++ architecture is designed to extend existing routers by layering ac-

tive network-specific functionality on top of the router operating systems. A generic

high-level active network layer enables cross-platform programming and processing of

active programs. To unify access and programmability of the active routers, well-known

interfaces (for example, the system API or PE interface) are exposed by this layer. Low-

level functionality of the active router architecture as provided by the active NodeOS is

directly integrated with the router OS in order to maintain good performance for the

active processing.

The architecture is generic in the sense that it can be implemented on any software-

based router platform. To assure platform independence, there are currently two proto-

type implementations for both MS Windows 2000 and Linux being developed.

CHAPTER 5. THE LARA++ ARCHITECTURE 100

5.5.1 Components

Components are the program units developed and distributed within LARA++. They

are dynamically loadable onto LARA++ active routers in order to extend the functional-

ity of a router or provide a new service. Components can either provide a self-contained

service or simply add functionality to a service composite.

As illustrated in Figure 5.2, LARA++ components can be either active or passive.

Active components perform the active computations on a node based on one or more

execution threads, whereas passive components provide merely static functionality simi-

lar to support libraries. Components can be further differentiated by their function into

user components and system components. User components are those active programs

or libraries that are injected by users of the active network. System components, by con-

trast, are the components that constitute LARA++ (for example, the packet classifier,

the active thread scheduler, the programming API).

User components within LARA++ have a minimal well-known interface similar to

the IUnknown interface known from the Microsoft COM component model [COM]. It

enables other components to query what other interfaces are exposed by the component.

Figure 5.4 illustrates an example user component with several interfaces.

IUnknown
LARA++

User Component

IActive ICustom

Figure 5.4: LARA++ Component Interfaces

Active components can be distinguished from passive components based on their

IActive interface, which is used to initialise (IActive.Initialize) and activate a component

(IActive.Main).

LARA++ components are built like normal shared or dynamic link libraries. Specific

functionality (for example, the LARA++ system API or active thread scheduler) is

dynamically linked to the components at compile time like normal system libraries. At

installation time, the component loader (CL) extracts the active component code from

the link library and loads it directly into a processing environment.

Finally, LARA++ components are distributed in the form of pre-compiled machine

code or as source code. In the latter case, the component code is just-in-time (JIT)

compiled the first time the the component is loaded (see also section 5.3).

CHAPTER 5. THE LARA++ ARCHITECTURE 101

5.5.2 Processing Environments

The LARA++ processing environments provide a safe and yet efficient execution en-

vironment for groups of active components maintaining a mutual trust relationship.

LARA++ defines trust relationships in terms of several criteria, but initially limits them

to user and code identities. Thus, depending on the code producer of a component and

the user who installs the component, the component might be regarded as trustworthy

for execution within a particular PE or not.

Although the LARA++ PEs share a very similar function as the execution environ-

ments defined by the DARPA active networking group [ANW98b], they are rather a

specialisation of the EEs with useful additional properties:

First, the PEs provide a safe code execution environment to protect the active node

from arbitrary active code based on the principles of software fault isolation (see section

2.8.1.1 for further information), resource management, and system call control. The

“visibility” boundaries defined by the PEs prevent malicious active code from breaking

out of the protection environment. As a consequence, malicious active code can only

disrupt the operation of the PE and the ACs executed within, but not beyond. This is

the reason why ACs executed within the same PE must have a mutual trust relationship.

Second, the PEs are designed for efficient active code execution of trusting ACs.

A light-weight thread scheduler as part of the PEs enables very efficient scheduling

of AC threads within the same PE. The high-level scheduling mechanism exploits the

advantages of trust relationships, namely that trusted active components can be executed

within the same protection environment without creating a security threat, in order to

minimise scheduling latency.

Protection based on the principles of software fault isolation implies that the system

API, or in other words the gate to low-level system routines and services, must be

provided as part of the protection environment. Therefore, the LARA++ API plays an

important part in the design of the PEs.

LARA++ System API

The LARA++ system API provides the programming interface for active and passive

components to program the active nodes. It has been designed with the following two

general design objectives in mind:

1. The main role of the API is to support packet forwarding, as opposed to arbi-

trary computations. Therefore, the interface provides special functions to support

data flow processing (i.e., packet processing, accounting and admission control for

resource usage, routing, etc.).

CHAPTER 5. THE LARA++ ARCHITECTURE 102

2. System calls that are not particularly unique to active networks are borrowed from

established interfaces specifications, such as POSIX.

As a result, the LARA++ system API encompasses active network specific system

calls in addition to standard system calls. The active network specific interface includes

routines, for example, to load, install and configure components, to register packet filters

with the classifier, and to access network packets and node resources. The standard

system interface must also be provided through the LARA++ system API (as opposed to

directly through the underlying operating system) in order to enable control through the

active NodeOS. For example, the standard system call for memory allocation: malloc()

must be checked by the policing component prior to execution to ensure that active

components do not exceed their memory resource quotas.

It is thus the responsibility of the processing environments to expose the LARA++

API within the protection domain of the PEs and to force components to use it. This may

imply to explicitly disable the use of default system interfaces and to provide equivalent

wrapper functions within the PEs.

From this, it can be concluded that the LARA++ programming interface does not

impose any restrictions on programmability. Safety and security is entirely a policing

issue. Finally, it is noteworthy that the specialisation of the execution environments

into PEs also accounts for the application of fine-grained module thinning3 techniques.

Each PE can provide a specially customised system API depending on the trust relations

between the active components being processed and the active NodeOS.

5.5.3 Policy Domains

The Policy Domains (PDs) proposed by the LARA++ architecture define the legitimate

scope for security and resource access policies for active computation. This purely logical

layer of the LARA++ architecture forms the management unit for node-local policies.

This implies, for example, that every PD maintains its own policy rule base. All active

components in the scope of a PD are policed according to the same policy rule base –

independent of their PE.

The idea behind the PDs is to offer different classes of service for active programs on

an active router. Depending on the PD of an active component, the component may have

a different level of resource access (for example, more memory, more CPU cycles) and

security restrictions (for example, packets can only be read, not modified or dropped).

The choice of the PD is taken at loading time of an active component. Based on

node-local loading rules, or an explicit selector within the component configuration, the
3Module thinning secures the programmable system by individually tailoring the programming in-

terface exposed to a software process based on the privileges of the user or program (see also section

2.8.2.3).

CHAPTER 5. THE LARA++ ARCHITECTURE 103

component loader assigns the active component to an appropriate PD. A default PD

is provided for the case that an active component does not specify a particular PD or

qualify for a high-privilege PD.

Although the PD provides the scope for policy management, policy enforcement is

carried out by the underlying active NodeOS, since policy enforcement is uniform across

all PDs. Depending on the active component that is policed at a given point in time, the

NodeOS switches to the policy databases of the corresponding PD. As a consequence,

the PDs are purely logical entities that do not involve any processing.

5.5.4 Active NodeOS

The LARA++ active NodeOS provides access to low-level system services (for example,

device configurations) and node-local resources. It is therefore responsible for controlling

access for user components based on the component’s privilege level and the system

policies defined by the policy domain.

The LARA++ NodeOS layers active network specific functionality on top of the

router operating system. Although it is designed as an extra layer on top of the router

OS to achieve platform independence, the architecture is tightly integrated with the

router OS for performance reasons.

Intercepter/
Injector

Network Stack

LARA++ System

Component-
Loader

Policing
Component

Policy
Database

Packet
Classifier

Protocol
Drivers

Device
Drivers

S
c
h
e
d
u
l
e
r

System API

System Call Control

M
e
m
o
r
y

M
a
n
a
g
e
m
e
n
t

API

Packet
Mapper

Access Ctrl

Resource
Control

Figure 5.5: Illustration of the LARA++ Active NodeOS. Active network specific func-
tionality is layered on top of the router OS such that standard operating system function-
ality (i.e., memory management, scheduling, etc.) can be easily integrated and reused
by the active NodeOS.

As illustrated in Figure 5.5, core components of the LARA++ active NodeOS are

the packet interceptor/injector, the packet classifier, the packet mapper, the system

interface, the system call control, the policing component and the component loader.

The packet interceptor and injector are directly integrated with the network stack of

CHAPTER 5. THE LARA++ ARCHITECTURE 104

the router OS. Depending on the active network services to be provided and the actual

implementation, data packets or frames can be intercepted (and injected) either on the

link-layer level (for example, as Ethernet frames) or on the network-layer level (as IP

packets).

The packet classifier determines whether or not packets passing the node need to

be processed by any of the active components. It finds out which components need to

process the packet and controls the order of component processing. A multiple stage

classification mechanism allows flexible ordering of packet filters and hence active com-

ponents (see section 5.6.2 for further details).

The packet mapper provides an efficient means to pass data packets between active

components. The mechanism was included to speed-up the packet handling on the node.

It is vital for the overall performance of the node when the protection scheme prohibits

memory access outside the processing environment boundaries (for example, in the case

of virtual-memory based memory protection). In this circumstance, memory mapping

enables lightweight access to packet data across protection boundaries through avoidance

of heavyweight copy operations (see Figure 6.2 for further details).

The LARA++ system interface provides access to the standard system interface for

normal system calls and active network specific system services. While standard system

calls are merely forwarded to the system interface of the underlying OS, LARA++

specific system services are directly implemented by the NodeOS component of the

system interface.

The system call control ensures node safety by restricting active components to the

interface exposed by the LARA++ API. It safeguards the system interface by checking

each direct call to the router OS for its origin. Only system calls that have been invoked

through the LARA++ system API (or non-LARA++ processes) are allowed. As illus-

trated later in Figure 6.3, malicious system calls that try to circumvent the LARA++

system API (i.e., through direct calls to the system interface or bogus software inter-

rupts) are strictly blocked.

The policing component is responsible for ensuring that active components conform

to the safety and security policies defined by the policy domain. The policing component

encompasses an access and resource control unit besides the policy database. While the

access control unit enforces the access policies by checking every system call for its

authorisation (based on the calling component and the corresponding policy domain),

the resource control unit manages the accounting of resources usage by the individual

components and performs admission control. See section 5.8 and 6.3.5 for further details.

The component loader is responsible for the dynamic fetching of missing active code

and the loading and installation of the active components. Since LARA++ supports

active code distribution ‘by reference’, which implies that active code packets merely

CHAPTER 5. THE LARA++ ARCHITECTURE 105

include a reference for an active component rather than the code itself, the component

loader may first have to download the component code before it can load it. A component

reference4 uniquely identifies a component (or its description file) through specification

of the location where it can be retrieved. As a result, when the router cannot find the

code for an active component in its local cache, it can retrieve the component either

from the source server using the HTTP standard (or any intermediate component cache

such as a web cache), or from the ‘last hop’ active router by means of the dynamic code

loading mechanism proposed by Wetherall et al. [WGT98]. While the former approach

is better suited for directed component distribution (i.e., only to specific active nodes),

the latter is more efficient for general component distribution (for example, along a whole

transmission path).

Once the active code is downloaded, the component loader must authenticate, instan-

tiate and initialise the component. It is the loader’s responsibility to select a “trusting”

processing environment for the execution of the active component. A processing envi-

ronment is considered trusting if all the instantiated components have a mutual trust

relation with the new component. Trust relations among LARA++ components are

defined by node-local trust policies. They define which sets of components trust each

other based on the identities of the code producer and the user loading the component.

5.6 Service Composition

One of the key contributions of the LARA++ architecture is the novel service composi-

tion framework for active services. It plays a central role in the overall architecture, as

it provides the foundation for the flexible and dynamic extensibility within LARA++.

The remainder of this section describes the concepts and operation of this framework in

full detail.

5.6.1 Operational Overview

Service composition on LARA++ nodes is carried out on two levels – the service level

(macro-level) and component level (micro-level). Different composition models are ap-

plied on the different levels:

Macro-level composition: On the service level, a comprehensive filter-based composition

model allows active components to dynamically integrate themselves into node-

local service composites. By inserting packet filters into the classification graph,

active components define the traffic pattern upon which the component should be
4The universal resource identifier (URI) [BLFIM98] format is used to reference LARA++ components

(for example, lara++://compserver.lancs.ac.uk/lcc.dll).

CHAPTER 5. THE LARA++ ARCHITECTURE 106

invoked and the order of execution relative to other components. Figure 5.6(a)

illustrates the use of this composition model.

Micro-level composition: On the component level, a lightweight, plugin-like composition

model enables the composition of active components from passive components. The

fact that active components can be largely composed from functionality provided

by passive components greatly facilitates active component design. Figure 5.6(b)

demonstrates how active components can glue together passive components to

provide a new service component.

...

NodeOS

Active

Components

Fire-

wall

. . .

Filter-based
Composition Graph

IP

Opt

QoSExt-

Hdr

ICMP

IP

IPv6

IPv4

ICMP

TCP

UDP

Web

Optim.

(a) Macro-level composition – Composition of ac-

tive services

Web

Optimi-

sation

LARA++

API

Web

Routing

Table
Custom

Policy

DB

Active Component

Packet Channels

Thread

Passive Components

(b) Micro-level composition – Composition of active

components

A closer look at these composition models shows that both have their strengths and

weaknesses. While the former is highly flexible and dynamic (i.e., packet filters can be

inserted at run-time), the latter is more efficient (i.e., no context switches are involved

for the invocation of passive components). As a consequence, the application of either

composition model is a trade-off between flexibility and performance. It is still unclear

to what extent those diverse approaches should be applied, or in other words, how much

composition should take place at the micro-level or macro-level. The challenge is to find

the right balance between component-level and service-level composition, such that the

overall service provides sufficient flexibility and performance.

Since the micro-level composition model is very well-studied and widely used for

service composition in conventional component systems, the remainder of this section

focuses on the macro-level composition model. The latter is also of particular interest

as it is specifically tailored towards service composition of active network services.

Macro-level service composition within LARA++ is largely packet driven. Depen-

dent on the packet content, a different overall service may be composed for the processing

of that packet. The packet classifier plays therefore a central role in the service composi-

CHAPTER 5. THE LARA++ ARCHITECTURE 107

tion process. It determines based on the set of packet filters currently installed whether

or not a packet passing through the active router requires active processing, which ac-

tive component(s) are involved, and in which order they should process the packet. The

classification graph, which is managed by the packet classifier, maintains the key data

structures for the composition framework. It organises the packet filters of the active

components according to their computational function, and thus, provides the basis for

the classification process. The following sections describe each of these elements in more

detail.

5.6.2 Packet Classifier

The packet classifier defines the “route” through the active component space for packets

passing a node. The classifier filters incoming (and outgoing) network packets based

on the component filters installed in the classification graph. Figure 5.6 presents an

example classification graph that is used here to illustrate the operation of the packet

classifier.

Active

NodeOS

Active

Component Space

ACn
…

Network

Layer

Transport

Layer

Application

Layer

netin

ipv4
ipv6

icmp
exthdr

tlin

tcp

udp

tlout

tcp

udp

netout

ipv6

Processing Environment

AC2
AC1

http
alin alout

cut-through

Figure 5.6: A Simplistic Classification Graph

The classification mechanism traverses the classification graph starting at the root

CHAPTER 5. THE LARA++ ARCHITECTURE 108

node (i.e., /netin). On every node in the graph, the classifier tries to match the packet

filters installed by the active components at this point in the graph. Packets that match

any of those filters are passed to the corresponding active component. After completion

of the active processing, the classifier continues the multi-stage classification mechanism

at the same point (or an optionally specified point defined by the packet filter5) in the

classification graph. When the classifier has applied all packet filters that have been

installed by the active components at a node, it follows the classification graph based on

the “default” or graph filters (for example, /netin/ipv4 or /netin/ipv6) and continues

the classification process there. The classification process finally terminates when the

classifier runs out of filters branches. That is typically when the packet is sent off to the

next hop.

An examination of the classification process shows the similarities between the gen-

eral concept of “packet routing” in data networking and the way service composition

is achieved within LARA++. The problem of service composition within packet driven

systems (such as routers) can be largely reduced to the general problem of “routing”.

The question simply becomes how to route a packet through the “network” of compo-

nents. Hence, similar mechanisms to those found in normal routed networks can be

applied to solve the composition problem within LARA++. For example, the graph

filters at each node in the classification graph are used like the ‘routing table’ in packet

switched networks. These filters define how to forward packets to the next nodes in the

component network.

A reflection on the classifier’s role for the packet processing on LARA++ nodes

emphasises its importance for the overall architecture. The classifier is therefore a core

system component of the active NodeOS. The fact that the packet classifier requires

low-level access permissions (for example, to pass packets to active components and

to awake active component threads) mandates a system-level implementation of the

component. Furthermore, since service composition within LARA++ relies on extensive

packet classification, the integration of the classifier into the low-level active NodeOS

has also a positive impact on the system performance.

5.6.3 Packet Filters

The packet classifier distinguishes two types of packet filter: active component filters and

graph filters. Figure 5.7 illustrates how these filters are used within the classification

graph.

Active component type filters are used by active components to define the network

packets of their interest. These filters are registered with the packet classifier at instan-
5Availability of this option depends on the user privileges and filter type (i.e., protocol or flow specific).

CHAPTER 5. THE LARA++ ARCHITECTURE 109

/IP

…

/IP/IPv7?

/IPv4

/IPv4/ToS

/IPv4/Options

/IPv6

/IPv6/HopbyHopOpt

/IPv6/RoutingHdr

/IPv6/DestHdr

…

Active Component

Packet Filter

Graph Filter

Default "Route"

Figure 5.7: The classifier manages packet filters within a filter graph structure, called
classification graph. Active component filters are used to dispatch network data to ACs
for processing, whereas graph filters are used to define the structure of the graph.

tiation time of the components and at run-time if necessary. The classifier uses these

filters to determine the active components to which network traffic is sent for active

processing. The graph filters, in comparison, are used by the classifier in order to define

the structure of the filter graph. These filters are used to define the branches in the

classification graph. Appendix A describes the common properties of both filter types.

For reasons of scalability, active component filters can be further subdivided into

general filters and flow filters. Given that a component may install a significant number

of filters (for example, to identify individual end-to-end flows), it would be very costly to

check each of these packet filters on a per-packet basis. Flow filters have been introduced

to overcome this scalability problem. Like general filters, they can filter on any arbitrary

bits (fields) in the packet, but are restricted to packets of specific end-to-end flows 6.

The advantage is that they can be hashed based on their end-point properties, which

permits instant filter lookups even in the case of large numbers of flow filters.

To enforce restriction to a specific end-to-end flow, the classifier adds the obligatory

filter patterns to the flow filter at installation time. Although this may seem very

restrictive at a first glance, it is an extremely useful “limitation”. It enables secure active

processing within routers even for unauthenticated end-users. Limiting the data stream

to a user’s own end-to-end flow(s) reduces the security problem of active processing to

the problem of providing a safe and secure processing environment.
6An end-to-end flow is defined by the source, destination, or both end-points. An end-point may be

identified by network fields such as the network layer addresses and transport layer ports, or any other

flow labelling techniques (e.g., the flow ID in IPv6).

CHAPTER 5. THE LARA++ ARCHITECTURE 110

5.6.4 Classification Graph

As previously illustrated in Figures 5.6 and 5.7, the classification graph provides a flexible

structure for packet filters to be installed and structured on an active router. Each node

in the classification graph consists of a set of active component filters and graph filters.

While the former are used to “plug in” ACs into the packet processing chain (through

insertion of the filters at an appropriate location in the graph), the latter are used to

define the structure of the graph itself. Accordingly, the structure of the classification

graph can be dynamically altered simply by inserting or removing graph filters, which

provides a high degree of flexibility.

This extensible graph structure offers great flexibility for the composition of active

services (i.e., new nodes in the classification graph can be easily introduced as new net-

work protocols become available). However, the basic structure of the graph must be

known to the active component developers and/or user to define where in the classifica-

tion graph a component should be integrated. For example, an AC that wants to process

HTTP requests should be executed subsequent to active components providing network

and transport level services. Thus, in this example, the best location within the packet

processing chain would probably be: /netin.(ipv4|ipv6).tcp.http.

5.6.5 Classification Graph Table

The classification graph table (CGT) provides the means to describe the structure of the

classification graph. Its main purpose is to make the graph structure globally available

across a LARA++ active network. In order to support flexible extension of the classifi-

cation graph (and hence the packet processing chain on the active routers), an “elastic”

means to describe the graph structure is required. For this purpose, a simple notion to

defines the nodes (for example, ipv4, tcp, and udp) and the branches of the graph (for

example, ipv4 → tcp or ipv4 → udp) that provides sufficient flexibility to incorporate

new protocols and extend current protocol stacks has been introduced.

The basic structure of the classification graph described in the CGT conforms to

the TCP/IP layer model [Ste94], which ensures that active components providing low-

level services are processed before components dealing with higher-level computations.

For example, network protocol options must be processed prior to transport protocol

operations (see Figure 5.6). The fine-grain structure accounts for the layer-specific pro-

tocols. A specific example is that the extension headers in IPv6 must be processed in a

well-defined order.

As part of the classification node properties, the CGT specifies the types of filter

(i.e., general filters, flow filters) that may be installed inside the classification nodes. For

example, it would make no sense to allow general-purpose filters to be processed before

CHAPTER 5. THE LARA++ ARCHITECTURE 111

filters pertaining to a firewall component, or otherwise the node would be vulnerable to

a denial-of-service attack. Classification nodes also maintain permissions for fine-grained

control of data access at the node. Currently defined permissions are no (no access), ro

(read-only), wo, (write-only), and rw (read-write) access permissions.

Since the CGT is expected to change occasionally (for example, a new node in the

classification graph might be introduced when a new protocol becomes established), an

automated mechanism to update the CGT across the active network is desired. The fact

that the CGT defines the structure of the component graph (which provides the basis

for the packet “routing” inside the active node) in much the same way as the IP routing

table defines the network topology, suggests that a routing protocol like mechanism is

suitable.

At a first glance, it may seem that the overhead of updating the CGT every time

a new protocol is introduced is heavyweight and makes the system inflexible. However,

it should be noted that a CGT update is only required if a new protocol or protocol

extension is “standardised” (i.e., globally announced such that it can be extended by

others). The CGT does not require a global update in order to deploy and test the new

protocol or extension at first.

5.6.6 Characteristics

Service composition within LARA++ is a co-operative process based on dynamic and

conditional component bindings. It is a co-operative process as LARA++ nodes allow

independent network users (controlled by the local security policies) to install active

components that match the same data streams or subsets of streams. The classification

graph provides the means for independent users to integrate new active functionality or

services in a “meaningful” way without having to know or worry about the component

interfaces of ACs installed by other users.

The fact that active services are composed through insertion or removal of packet

filters (when components are instantiated or removed) at run-time makes the component

bindings highly dynamic. The decoupling of component bindings among ACs through

the filter concept and the classification graph hides changes from all but the component

directly involved. Neighbouring components in the classification graph are not disrupted

when another AC is removed.

Since the service composite depends on the data in the packets, the bindings are

called conditional. A binding is only in force when the AC filter for the binding matches

a data packet. Service composition within LARA++ is therefore a process that takes

place on a per-packet basis.

The service composition approach proposed by LARA++ can also be described ac-

CHAPTER 5. THE LARA++ ARCHITECTURE 112

cording to the general characteristics of composition frameworks as introduced in the

active network working group draft on composable services [ANW98a]:

Sequence control is based on the dynamic structure provided by the classification

graph. The classifier determines based on this structure which active components need

to process a packet passing the node and in what order. Both sequential and concurrent

executions of active components are supported.

Shared data control is implemented by the packet classifier. It passes network

data and associated state between those ACs that indicate interest in processing the

packet.

Binding time is at run-time. Since the actual binding of ACs depend on the packet

data (or in other words whether or not a packet filter matches the packet), composition

takes place at packet processing time on a per-packet basis.

Invocation method is based on the arrival of active code. Upon receipt of active

code (i.e., a packet including an active component), the component loader invokes the

component bootstrapper of a “trusting” processing environment7 in order to instantiates

the active component. The component in turn plugs itself into the service composite by

inserting one or more packet filters.

5.6.7 An Example

This section demonstrates how the LARA++ service composition process and in partic-

ular the packet classifier operates based on the example scenario introduced in section

5.2.1.

The local congestion control mechanism introduced by the network administrator

requires access to all IP packets labelled with the CoS tag in the IP options field. The

congestion control component would therefore define a packet filter that matches the

respective tag and insert it into the classification graph. Since the congestion control

mechanism drops “low priority” packets in the case of congestion, it is best executed

early on the incoming path (before much processing is done). A suitable point to in-

sert the packet filter in the classification graph would thus be /netin.ipv4.options or

/netin.ipv6.exthdrs.

The handoff optimisation component, by comparison, redirects packets sent to a

mobile node’s previous location to its new location (after a network handoff). This end-

user initiated service requires therefore access to all IPv6 traffic destined to the mobile

node’s previous care-of-address. Hence, a suitable classification graph node to insert the

packet filter for this component would be /netin.ipv6.

These exemplary applications illustrate how independent active components (devel-
7Note that if none of the existing PEs consider the new component trustworthy, the component loader

creates a new PE for this component

CHAPTER 5. THE LARA++ ARCHITECTURE 113

oped by different people or companies and installed by different users) can co-exist,

and yet be part of the same active service composite – even without knowledge of one

another.

5.7 Safety and Security

The LARA++ safety and security architecture is based on a combination of known

mechanisms. While safe processing environments protect the system from malicious

or erroneous active code, user and code authentication and access control mechanism

enforce security.

5.7.1 Goals

The following high-level goals have led the design of the LARA++ safety and security

architecture:

1. Safety and security mechanisms should incur minimal overheads during normal

operations.

2. Overall system safety and security should be maximised by reducing the trusted

component base (TCB).

The former is achieved by migrating expensive operations to infrequently called pro-

cedures such as the initialisation phase. For example, heavyweight public-key authen-

tication of users and active code is carried out only once during the instantiation of an

AC, while a lightweight authentication mechanism is used internally for frequent system

calls.

The latter is accomplished by reducing the trusted component base to the active

node implementation. However, since user and component authentication is based on

public key encryption, LARA++ also needs to trust a public key server (as the only

remote entity to be trusted).

5.7.2 Safe Execution of Active Code

The LARA++ architecture provides safety for the execution of arbitrary active code

based on the processing environments introduced in section 5.5.2. However, the ar-

chitecture does not define how the processing environments provide safety; it merely

requires the processing environments to provide “process-like” protection. The PEs

must therefore ensure that active code being executed cannot harm the low-level active

NodeOS (or even the system OS) or any other PE (or ACs executed by other PEs).

CHAPTER 5. THE LARA++ ARCHITECTURE 114

As a consequence, the LARA++ processing environments must at least include pro-

tection mechanisms for memory and computational resources.

5.7.2.1 Memory Protection

LARA++ protects active processes from each other through a technique commonly re-

ferred to as software fault isolation (see also section 2.8.1.1). The “visibility” boundaries

defined by the PEs prevent malicious active code from accessing memory outside its

protection environment. This can be achieved through a number of mechanisms ranging

from language based techniques (for example, strongly typed languages without pointers)

to virtual memory management (as used by conventional operating systems).

The use of language based protection is typically easy to realise (as the problem

is offloaded to the language designer) and fairly lightweight (no heavyweight8 context

switches are required), but at the cost of flexibility. System based protection mechanisms

such as virtual memory based approaches, by contrast, are language independent and

allow the use of typical system languages such as C, which support pointer arithmetic,

user controlled memory allocation and omit run-time checking of types and ranges.

Since context switches between protection domains can be relatively heavyweight

(for example, in the case of virtual memory based protection), LARA++ exploits the

benefits of trust relations among active components to minimise the number of these

context switches. For example, components with a mutual trust relationship can be

executed within the same protection domain.

5.7.2.2 Pre-emptive Thread Scheduling

Besides the protection of memory resources, LARA++ must also protect the processing

resources from fraudulent or erroneous active programs. LARA++ must prevent active

programs from consuming more than their share of the processing resources (or even fully

‘locking’ a processor). As a consequence, LARA++ requires some form of pre-emptive

scheduling mechanism that allows the low-level system to interrupt active programs that

exceed their scheduling quantum.

The LARA++ architecture proposes the use of two thread schedulers – a system

thread scheduler to warrant safety, and a component thread scheduler for performance

reasons:

The system thread scheduler is needed to protect the processing resources on

the active node. Since LARA++ requires separate system threads (at least one for each
8For example, a context switch between virtual address spaces typically involves a system call (i.e.,

two context switches between kernel and user space) and requires the invalidation of cached memory

pages.

CHAPTER 5. THE LARA++ ARCHITECTURE 115

PE) to share the processing resources among the PEs and other systems tasks, a system

thread scheduler must be provided by the underlying OS or the active NodeOS.

The component thread scheduler, by comparison, has been introduced to the

processing environments for efficiency reasons (see also section 6.5.3). Since thread

scheduling of trusted components within the same protection domain does not involve

heavyweight context switches, scheduling of component threads can be very fast (see

section 7.4.1 for measurement results). Although the trusted components of a single

PE could also share the processing resources through cooperative scheduling without

weakening system safety, LARA++ suggests a pre-emptive algorithm for convenience

and fairness reasons. Pre-emptive scheduling is fully transparent to the programmer

and allows the scheduler to fully control resource scheduling as desired.

5.7.3 Security Mechanisms

The LARA++ security model is primarily based on user and code authentication, and

authorisation of security critical operations. These operations encompass the installation

of active components, registration of packet filters and access to low-level system ser-

vices and resources (through the LARA++ API). The general principle of this security

approach is: “who developed the active code and who installed the component determines

whether or not an operation can be carried out.”

The remainder of this section discusses how LARA++ uses the following security

mechanisms: authentication, code signing and access control.

5.7.3.1 Authentication

LARA++ uses authentication techniques to identify network users and active code pro-

ducers securely. Based on these identities LARA++ determines whether or not an

operation can be authorised.

Authentication within LARA++ can be built on public key encryption mechanisms

such as RSA or DSA (see section 2.8.2.1). The user installing an active component (or

code producer developing an active component) encrypts its identity (i.e., username or

company name) with its private key. Public key encryption ensures that the encrypted

message can only be decrypted with the public key assigned to the user. Therefore,

a LARA++ node that receives an authentication message (for example, as part of an

active code packet) can securely verify a user’s identity based on the user’s public key.

The fact that authentication based on public key encryption relies on trusted key

servers and secure key exchange mechanisms, obliges LARA++ to provide such a service

across the active network or to enable the (re-)use of an existing public key infrastructure.

CHAPTER 5. THE LARA++ ARCHITECTURE 116

5.7.3.2 Code Signatures

LARA++ uses code signatures (1) to identify the code producer of a component and

(2) to verify the code integrity.

Code signatures are created from the checksum (for example, CRC or message di-

gest) of the active component code. The code producer encrypts the checksum with its

private key and includes it into the component’s configuration file. When a LARA++

node receives the active component for installation, it decrypts the checksum with the

code producer’s public key and verifies it against the self-computed checksum. If the

checksums match, the integrity of the active code and the identity of the code producer

are validated.

LARA++ can use standard algorithms, such as those based on CRC or a specific

technique like MD5, to calculate the code checksum/digest. Encryption of the code

checksum can be based on the same public-key encryption algorithms used for user

authentication.

5.7.3.3 Access Control

Access control is the primary means through which LARA++ achieves security. The

policy enforcement component (see also section 5.8.1) controls access to system services

and resources based on the user and component identities. It blocks unauthorised active

system calls and controls resource usage accordingly.

Access control is used to secure the following operations:

Active component execution – The installation of active components is firmly controlled

by the component loader. Access control regarding active code execution is based

on the identity of the network user installing the component and the code producer.

Network data access – The insertion of packet filters into the classifier is also subject to

access control. Again, depending on the respective user and component identity,

the classifier accepts or rejects packet filters. However, access control with respect

to network access must also take into account the location of a filter within the

classification graph (for example, /netin or ipv6), the desired access permissions

(i.e., ro, wo, rw) and the filter type (i.e., general filter or flow filter).

System API access – Controlled access to the system API is again based on the user and

component identity. However, since system calls, such as calls to send or receive

packets, occur very frequently, LARA++ introduces a lightweight “authentication”

mechanism for internal use. The mechanism uses a unique and (pseudo) random

‘identifier’ to efficiently identify and authorise active components (see also section

5.8.1). The identifier provides the means to efficiently lookup a component’s access

CHAPTER 5. THE LARA++ ARCHITECTURE 117

privileges during a system call. Depending on the particular system call and the

access privileges of the component at hand, access is either granted or denied.

Resource usage – Access control to system resources (for example, memory, CPU and

bandwidth) further demands an admission control component, which accounts for

resources as they are consumed. Nevertheless, since these resources are also ac-

cessed through the LARA++ system API at run-time, resource usage too can be

controlled through the system API access control mechanism described above.

5.8 Policing

LARA++ uses policing as the main measure to achieve security on active nodes. In order

to maximise flexibility for policing, LARA++ manages a separate policy database for

each policy domain. Allowing active components to be associated with different policy

domains, and hence with different system and resource access policies, based on the user

downloading the component and/or the code producer, enables fine-grained control.

The remainder of this section describes the policy enforcement and specification

mechanisms in further detail.

5.8.1 Policy Enforcement

Policy enforcement must strictly control all security threatening operations on the active

router. Within LARA++ this implies that policy enforcement must control the installa-

tion of active components, the insertion of packet filters, and run-time access to system

services and resources through the system API.

Since policing within LARA++ depends primarily on the user and/or code producer

identity, secure authentication mechanisms for active components (as described in sec-

tion 5.7.3) are vital. However, authentication based on public key encryption and code

signatures is computationally expensive and therefore unsuitable for run-time policy

enforcement on a per-packet basis.

As a result, LARA++ introduces a lightweight “authentication” mechanism for inter-

nal use. The mechanism uses a unique and (pseudo) random active component identifier

(ACID) that is generated during component installation. Since component installation

is only performed once per component (as opposed to on a per-packet basis), full user

authentication and code signature check is carried out before the ACID is created.

Along with the ACID, the active NodeOS creates an active component data structure

(ACDS) which comprises all component specific, run-time critical information (for ex-

ample, user id, user group, code producer, component group). In particular, the ACDS

defines which system APIs can be accessed by an active component. The ACDS also

CHAPTER 5. THE LARA++ ARCHITECTURE 118

holds the information required for resource control, namely the current resource usage

and the resource limits of an active component.

The ACID is used during a system call as a hash key to lookup a component’s ACDS.

H(ACID) → ACDS (5.1)

The ACDS is needed to check whether or not the calling component has permission

to access the respective system call. In the case of a system call that consumes any

controlled resources, the ACDS is needed to check whether or not the component still

has sufficient resources available to complete the respective operation. Consequently,

any resource usage (i.e., allocation and release) must update the component’s ‘resource

meters’ in the ACDS.

In summary, the ACIDs and ACDSs provide the means for fine-grain access control

for active components on a per system call basis. Furthermore, they enable highly

efficient run-time policy control due to (a) the fast lookup of the components control

structure, and (b) the optimised representation of the ACDS for fast policy verification.

Since the security of this approach is mainly based on the correctness of the ACIDs,

they must be sufficiently long such that malicious components cannot easily guess the

ACID of a high privileged system component. In order to defend against brute force

attacks, the policy enforcement component immediately destroys active components us-

ing invalid ACIDs. In addition, a mechanism is required that prevents impostors from

repeatedly instantiating such components.

Dynamic changes of run-time policies while the active node is operating demand

special consideration. Since policy enforcement is not directly performed upon the pol-

icy rule base, but upon the optimised representation provided by the ACDS, the ac-

tive NodeOS must re-compute the affected ACDSs subsequent to changes in the policy

database.

5.8.2 Policy Specification

This section provides an overview of the different policy types that are supported by

LARA++. Since a complete definition of all policy rules would be beyond the scope of

this document, only a brief description of the policy specifications is provided.

Policy specification within LARA++ is based on the concept of domains and groups.

While domains define the classes or categories of entities upon which policies are de-

fined (i.e., users, components, resources), groups identify collections of entities that are

grouped together for simplicity and scalability purposes (i.e., to aggregate common poli-

cies).

LARA++ policies make use of the following domains and groups:

CHAPTER 5. THE LARA++ ARCHITECTURE 119

User Domain: This domain defines the users of the active network for which policies

are needed. Users can either be identified by their individual names or by their

group name. User groups can be easily created and individual users can be flexibly

assigned. The default set of user groups include: system administrators, network

administrators, privileged users, authenticated users, and others. A special group,

referred to as all, encompasses all users (known and unknown).

Code Producer Domain: This domain defines the code producers of active com-

ponents (for example, Cisco or Microsoft). It enables policies that consider the

producers of active code in addition to the users loading the code. Again, the use

of groups, such as trusted, authorised or authenticated producers, enables aggrega-

tion of policies, which can greatly simplify policy specification. Active programs

that have either none or an unknown code signature are assigned to the group of

unknown producers.

Component Domain: This domain is defined by the properties of active components

(for example, trusted or untrusted components) and the component types (for

example, user or system components). Again, policy specification can be simplified

through the use of component groups. The following default component groups

are defined: system or user components and trusted, privileged, authenticated or

unknown components.

System Call Domain: The system call domain defines different classes of system

calls. For example, such classes could include system calls for memory allocation,

persistent memory access (reading and/or writing), or routing table update. Yet

again, the idea here is to group similar systems call in order to facilitate policy

specification. The grouping of system calls enables aggregation of policies (i.e.,

policies do not have to explicitly address individual system calls).

Resource Domain: This domain encompasses all the resource types that can be

accessed through the LARA++ API (for example, persistent memory, memory,

bandwidth, processing). The resource domain also includes logical resources, such

as the routing table, number of files, etc. Consequently, this domain enables the

definition of policies that limit (or grant) active components a certain quantum

of a resource. Depending on the resource type (whether or not it is scheduled),

different scheduling policies may be provided. For example, network and processing

resources can be scheduled according to best-effort mode (default) or based on

priorities (see section B.3 for an example).

Policy specification within LARA++ is divided into three parts. Each part governs

the policies for one of the following protection realms: (1) instantiation of active com-

CHAPTER 5. THE LARA++ ARCHITECTURE 120

ponents, (2) installation of packet filters, and (3) run-time control of active components.

The various policy types along with examples on how to use them is further discussed

in Appendix B.

5.9 Summary

This chapter has presented the design of LARA++, a novel, component-based active

router architecture. The primary focus of this design is to provide a highly flexible and

extensible active node architecture, suitable as a research platform for edge networks,

that can form the basis for further research into active networks and networking in

general. The motivation behind the new approach and the design overview of the novel

architecture has been described in section 5.2 and section 5.4 respectively.

The work presented here has built on lessons learned from the design and development

of Lancaster’s first generation active router architecture, called LARA. The background

work on LARA has been introduced in section 5.3. On the one hand, LARA++ greatly

improves programmability of active nodes regarding flexibility, extensibility, usability,

safety and security. On the other hand, the LARA++ software architecture has been de-

signed bearing in mind the possibility of adopting the LARA scalable high-performance

hardware architecture later.

In contrast to LARA, the LARA++ architecture emphasises mainly the software

architecture of the active router. The key building blocks, namely the active NodeOS,

the policy domains, the processing environments, and the active and passive components,

have been presented in section 5.5.

The advances regarding flexibility and extensibility are primarily a result of the

component-based programming model proposed by LARA++. The filter-based service

composition framework described in section 5.6 enables flexible and co-operative pro-

grammability and extensibility of active node functionality at run-time. Usability has

been improved due to the introduction of the user-space processing environments. For

example, they facilitate component development because standard development envi-

ronments and programming interfaces can be used. Furthermore, the introduction of

the processing environments has a significant impact on the safety aspects of active

programming. The software fault isolation techniques provided by the safe processing

environments have been discussed in section 5.7. Finally, the security procedures have

evolved to a highly flexible and configurable framework based on policing. Section 5.8 has

presented the various policy types and rules, and the corresponding policy enforcement

mechanisms.

The following chapter continues this thesis with an overview of the LARA++ pro-

totype implementations. Due to the broad scope, the prototype implementations serve

CHAPTER 5. THE LARA++ ARCHITECTURE 121

mainly as proof-of-concept for key mechanisms and design decisions of the LARA++

architecture.

Chapter 6

Implementation

6.1 Overview

This chapter describes the ongoing efforts to engineer a prototypical realisation of the

LARA++ active router architecture. The previous chapter has presented the design of

this novel architecture. Due to the extent of the LARA++ architecture, the prototype

implementations focus primarily on validating the key aspects of the architecture by

implementation.

After a discussion on potential router platforms for the implementation of LARA++

in section 6.2, this chapter describes the implementation of the main components of the

layered architecture. The details of the implementation are discussed layer by layer,

starting with the active NodeOS in section 6.3. This is followed by the implementation

of the policy domains (section 6.4) and the processing environments (section 6.5). Fi-

nally, section 6.6 discusses the development of LARA++ components along with several

example components.

6.2 Router Platforms

As mentioned previously in section 5.5, the LARA++ architecture layers active net-

work specific functionality on top of an existing router platform. The LARA++ active

NodeOS is tightly integrated with the router OS in order to obtain full control of the

system (for example, to change scheduling policies) and maximise performance (for ex-

ample, for resources access, packet classification, data handling). As a result, the use of

an open-source or source-available operating system is vital.

Since conventional routers are typically closed commercial systems, it is virtually im-

possible to get source-level access to the software. The source code of the router software

is considered the manufacturer’s secret asset and therefore well protected. On the one

hand, router manufacturers fear that it could fall into the hands of their competitors,

122

CHAPTER 6. IMPLEMENTATION 123

which would give them cheap access to new developments. On the other hand, router

manufacturers do not want third parties being able to extend the router software in

order to secure the company’s future business. As a consequence, these systems are not

pragmatic for use as an underlying platform for LARA++.

Instead, router systems based on commodity operating systems have been considered

as a starting point for the prototype implementation of LARA++. The integration of

active network support with a commodity operating system is also advantageous as

LARA++ can evolve in parallel and still take advantage of enhancements made to the

standard operating system.

Consequently, the LARA++ prototype implementations outlined in this chapter are

being built upon Linux and Microsoft’s Windows 2000 (both of which support basic rout-

ing functionality as part of the core OS). Despite the fact that the latter is a commercial,

non-open source OS, source code access has been gained through close collaboration with

Microsoft Research in Cambridge as part of the LandMARC [Lan01] project.

Since the work presented here was primarily funded by Microsoft Research, the initial

implementation work has been carried out on the Microsoft platform. However, as

platform independence is important for active networking (which typically involves many

network nodes) a second implementation under Linux was initiated recently. Although

the implementation and integration of the LARA++ active NodeOS functionality into

these operating systems is not the same due to the differences in the OSs, the principles

and functionality remain the same.

In both cases, a modular approach has been taken for the design of the active

NodeOS. While in Windows 2000 the NodeOS modules are implemented as a series

of ‘virtual device drivers’, under Linux the kernel module support is used (see also sec-

tion 3.3.1.6). The modular approach provides a relatively clean separation between the

active NodeOS and the remainder of the kernel. However, more importantly, this de-

coupling also introduces an element of safety and enables dynamic extensibility. Both

virtual device drivers and kernel modules can be dynamically loaded and removed with-

out affecting the rest of the system. So, if trouble ensues, the malfunctioning LARA++

component can be removed and re-initialised without disrupting the entire system.

6.3 Active Node OS

The implementation of the LARA++ active NodeOS is integrated with the base oper-

ating system for reasons such as control and efficiency. A tight integration with the host

operating system grants the NodeOS full control to implement system-level functionality

such as packet handling, resource scheduling and policing, and enables high performance

for the active processing.

CHAPTER 6. IMPLEMENTATION 124

This section describes the LARA++ active NodeOS modules that have been imple-

mented so far for our Windows 2000 and/or Linux prototype systems.

6.3.1 Packet Interceptor / Injector

The packet interceptor and injector provide the interface between the LARA++ active

network environment and the data path on the node. The packet interceptor is respon-

sible for intercepting the network traffic traversing the node and passing it to the active

network environment for processing. The packet injector, by contrast, re-injects the net-

work data back into the default forwarding path on the node or sends it directly through

one of the outgoing interfaces.

Under Windows 2000, the packet interceptor/injector is implemented as an interme-

diate network device driver [IDD]. The Windows network driver interface specification

(NDIS) [NDI] enables the placement of so-called intermediate drivers between the lower-

layer network interface card (NIC) driver and the upper-layer network protocol driver.

Thus, all traffic that is received by the node is passed through the intermediate driver

to the network layer protocol for the default processing (for example, routing) and vice

versa.

Under Linux, the packet interceptor/injector is integrated with the classification

mechanism. The packet classifier, which is based on an extension of the Linux netfilter

module [NET], also intercepts link-layer frames and tries to match them against the

active component filters.

Interception of traffic at the link-layer has the advantage of making the system net-

work protocol independent. As a consequence, it maximises the flexibility of the active

node by enabling extensibility of active router functionality at the network layer (for ex-

ample, LARA++ components could provide the functionality for a hypothetical Internet

protocol version 7).

In both implementations, the packet interceptor/injector can be loaded (or unloaded)

dynamically at run-time (without interrupting the entire system). This allows LARA++

to dynamically activate (and deactivate) the active network functionality on a node.

Note that removing the packet interceptor completely disables any LARA++ specific

processing on the data path.

6.3.2 Packet Classifier

The packet classifier is a key component of the LARA++ architecture. It is responsible

for the dispatch of classified packets to active components. Since the classification process

is very much self-contained and does not directly interface with the router OS, a platform

independent implementation has been developed.

CHAPTER 6. IMPLEMENTATION 125

Figure 6.1: The LARA++ Classifier Architecture

Figure 6.1 illustrates the architecture of the LARA++ classifier. The classifier is the

first and last element through which packets pass when being processed by a LARA++

router. Incoming packets, intercepted by the packet interceptor component, are asyn-

chronously queued on a circular buffer known as the external queue. The classification

thread sequentially takes packets from this queue and performs an initial classification.

After a packet has been classified (i.e., a component has been selected to perform ac-

tive processing on the packet), the packet is immediately queued in the packet channel of

the active component and the classification engine may continue to classify more packets

until all packets are classified or until its scheduling quantum is over. This asynchronous

approach allows the classifier to efficiently classify packets (avoiding the overhead of

synchronisation between the classifier and active components). Once classified packets

have been processed by the corresponding active components, they are returned to a

second queue known as the internal queue.

Many components will often be identified to process a packet over the course of its

passage through the active router. However, it is not possible to identify all components

to which a packet will be sent in advance because components could change the content

of the packet. Therefore, re-classification of packets between the processing of active

components is crucial. Packets requiring reclassification (i.e., waiting on the internal

queue) are separated from packets that are awaiting initial classification (i.e., waiting on

the external queue) so that the classifier may discriminate, to the benefit of the perfor-

mance of the node. By processing packets waiting on the internal queue in preference

to those on the external queue, the classifier minimises the latency of the individual

packets.

Packets removed from the external queue for classification are given a classification

context that records the progression of the packet through the classification graph. This

context remains with the packet for the duration of its passage through the active router.

In order to facilitate the processing of a packet by flow filters, the flow keys for the packet

are computed only once on arrival at the node and then stored in the packet context.

CHAPTER 6. IMPLEMENTATION 126

Packets taken from either of the two classification queues resume their classification at

the same classification node from which the last classification had been made, starting

with the subsequent filter. If the packet is undergoing its first classification, it begins at

the first graph node and with the first filter.

Each packet removed from a classification queue is processed as follows until an

active component filter has been matched or until the classifier passes the last filter in

any given classification node. Filters are processed in the order: flow filters, general

filters, graph filters and finally, the default graph. Flow filters are checked by looking

up the flow in a hash table. Each classification node has its own hash table. The hash

value calculated for each packet based upon the flow characteristics on arrival is used

as the lookup key, and the table then yields a list of candidate flow filters. The list of

flow filters must then be checked to find the correct flows. General filters and flow filters

whose flow is identical to that of the packet are then checked against the packet. If any

filter rule matches the packet, a successful classification is deemed to have been made.

Graph filters are processed last in each classification node. This ensures that all

active components that have placed filters matching the packet in the classification node

are processed. Graph filters contain matching rules similar to flow and general filters.

If a graph filter is matched, classification terminates at the current classification node

and resumes at the next node defined by the graph filter. If no matching graph filters

can be found but the current classification node has a default graph, then classification

continues at the start of the classification node indicated by the default graph. Otherwise,

the end of the classification node is reached and the packet is deemed to have finished

classification, and hence active processing, and is passed to the packet injector component

for forwarding.

Filter Processing

The creation of a service composite for each packet is based on the packet filters. Section

5.6.3 introduced the notion of filter patterns. Each filter type (general, flow and graph

filter) contains such a pattern as one of its attributes. While the expression of packet

filters in this way is convenient and extremely flexible, it comes with an inherent over-

head. The position of fields that might be identified by the filter pattern (for example,

TCP HEADER) can change from packet to packet. This means that the absolute offset

must be recalculated for each packet. The impact of the operation can be somewhat

lessened if the classifier maintains a list of packet characteristics (for example, protocol

headers) that have been identified during the classification of the packet in its journey

through the active router. These “features” can then be used in the offset calculation,

rather than having to parse the packet to locate these features each time they are re-

CHAPTER 6. IMPLEMENTATION 127

quired. For example, the classifier could store the offset of the IPv6 header for each

packet when the header is encountered so that subsequent filters can use it in offset cal-

culations. Because of this approach, it is not a coincidence that most headers have one

or more dedicated classification nodes in the classification graph; this is a property of the

composition model. Therefore, the classifier can store an offset of a feature processed at

a classification node upon arrival at that node.

In order to take advantage of this optimisation, graph filters are given an additional

property known as the focus translation. The packet context contains a stack of foci. If

a graph filter is matched or default graph is encountered, a new focus is pushed on top of

the stack. The new focus increases/decreases the previous offset by the focus translation

of the matched graph filter or default graph. For example, the focus translation of a

graph filter branching between an IP header and a TCP header would be the size, in

bytes, of the IP header. Therefore, a focus that previously pointed to the offset of the

IP header would point to the start of the TCP header subsequent to the processing

of the graph filter. Consequently, the problem of finding a packet feature for use in

offset calculation is reduced to one of searching for the desired feature (identified by the

classification node) on the stack of foci. The focus stack model was chosen because it is

likely that most attempts to examine features of packets will be made closest to the focus

of the packet in the current classification node. Since the most recent foci are placed at

the top of the stack, searches for foci usually find a match within a few attempts.

Another potentially heavyweight task in filter processing is the computation involved

in calculating the offset of packet fields. The fact that packet headers are not always of

constant length (for example, IP options can cause the length of an IP header to vary),

creates a need for flexible expressions in order to specify the focus translation. Given

the frequency of the evaluation of offsets (nearly every filter pattern uses an offset) and

the fact that packet filters do not change after filter installation, it is best to move the

overhead of evaluating the semantics of the expression to the installation time of the filter.

As a result, LARA++ uses a just-in-time compiler that translates the safe, machine-

independent offset expressions into native machine code at the time of filter installation.

Consequently, execution of the compiled expressions is very lightweight (only a few CPU

cycles). This allows focus translations and packet offsets to be calculated efficiently and

flexibly on a per-packet basis.

Note that classification algorithms based on the notion of data flows are well studied.

It has therefore not been deemed necessary to take part in these efforts as part of

this work. Recently published work in this field [WVTP97, NK98, SVSW98, SSV99]

demonstrates the viability of high performance packet classification scaling to a large

number of packet filters (in the order of millions).

CHAPTER 6. IMPLEMENTATION 128

6.3.3 Packet Channels

The active NodeOS establishes so-called packet channels to every active component being

instantiated on the node. These channels provide the means to transfer network data

(i.e., frames or packets) to and from the active components. Two unidirectional channels

are employed – one for streaming data to the active component (input channel) and one

to transfer the data from the components back to the active NodeOS (output channel).

Since the implementations of the LARA++ architecture described here are split

across kernel and user space (see section 6.5 for an in-depth discussion)1, standard

communication mechanisms between kernel and user space components would involve

heavyweight copy operations. More specifically, two copy operations would be required

for every packet being passed to an active component in user-space – one for passing the

data “up” into user-space and one to get them back “down” again. Clearly, a perfor-

mance hit of such a scale is not acceptable for network devices such as routers (see also

section 4.2.1.6).

In order to overcome this deficiency, LARA++ implements efficient, zero-copy packet

channels based on the principles of memory mapping. The mechanism behind the packet

channels relies on specific operating system support, namely it requires a means for the

operating system to make a physical memory area (i.e., segment or page) visible within

the protection domain of an active component (i.e., sandbox or process) and to withdraw

it again. Fortunately, most current operating systems provide such a mechanism through

the concept of virtual memory.

Based on this mechanism, the active NodeOS can “map” the memory area where a

matched packet is stored into the address space of the active components, and “unmap”

it after completion of the active processing (without the need for copying the data). The

Windows 2000 implementation of LARA++, for example, directly maps the physical

memory, where the packet data were stored by the network device driver, into the virtual

address space of the active component’s processing environment (see Figure 6.2).

For the management of the input and output channels, the active NodeOS establishes

a shared memory segment with the active components during component initialisation.

A separate packet queue is maintained for every channel. The queues are used to indicate

new packets to the active components and vice versa. Since the data packets are in fact

not copied, the queues pass only lightweight control structures of the packets up and

down. The control structures tell the active component where the actual packet data are

stored in memory. These internal structures include the packet length, the number of
1Note that the LARA++ architecture does not demand this split. This path was mainly chosen

to achieve language independence for active programmability and to enable integration of (standard)

operating system protection mechanisms.

CHAPTER 6. IMPLEMENTATION 129

Figure 6.2: Zero-Copy Packet Channels – Packet memory is directly mapped into the
virtual address space of the active component(s) processing the data.

packet buffers2, an array containing the addresses of the mapped buffers and the length

of each buffer, and the reference to the kernel-level control structure.

6.3.4 System Call Control

The system call control mechanism is vital to safety and security on LARA++ nodes.

It is the means by which LARA++ enforces security policies on active components

accessing the low-level system interface. As illustrated in Figure 6.3, malicious system

calls trying to avoid the LARA++ system API (i.e., direct calls to the system API or

bogus software interrupts) are strictly blocked.

The system call control must therefore intercept all system calls and check whether

the call has been invoked by a LARA++ component. If so, it must handover the call to

the policing component to verify the authorisation of the calling component. Otherwise,

if the system call did not originate from a LARA++ component, it is simply passed on.

To enforce that no unauthorised system calls can take place, the system trap module

(which implements the gate via which system calls enter kernel-space) must be altered.

A system call can be directly triggered by any user application simply by initiating a

software interrupt (i.e., int 2Eh). The same mechanism is used by the user-space stub of

the system API (for example, kernel32.dll) to switch context into kernel-space.
2Within most current operating systems, network packets are typically managed as a list of packet

buffers (for example, mbufs in Linux or NDIS buffers in Windows 2000).

CHAPTER 6. IMPLEMENTATION 130

Figure 6.3: System Call Control Mechanism – Malicious system calls avoiding the
LARA++ interface are blocked to ensure security.

At the time of writing this chapter, the system call control has only been implemented

for the Windows 2000 implementation of LARA++. It checks the process handle of the

calling thread to find out whether the call originates from within a LARA++ processing

environment. If so, the call must be first authorised by the policing component (prior

to passing it on to the actual system routine); otherwise, the call is allowed to pass. To

enforce that all LARA++ system calls (i.e., all system calls originating from active com-

ponents) are controlled by this mechanism, the NodeOS must registers every processing

environment with the system call control at instantiation time.3

A tight integration of the system call control with the system trap module is also

advantageous for performance reasons. It minimises the performance overhead caused

by the control mechanism. Since the system API is heavily used, such performance op-

timisations are crucial for the overall system performance. For this reason, the system

trap module is completely implemented in assembler language. As a result, the imple-

mentation of the system call control has also required the use of assembler. However,

this has benefited the overhead caused by the control mechanism, which turns out to be

bound to a few assembler instructions.
3Note that the processing environments can be trusted to register active components before they are

executed.

CHAPTER 6. IMPLEMENTATION 131

6.3.5 Policing Component

The policing component is responsible for applying node-local security policies to the

active processing on LARA++ nodes. This section describes the implementation details

of this component. A more general discussion on policing within LARA++ is provided

in section 5.8.

As the policing component is in charge of authorising critical system calls – i.e.,

system calls that provide access to controlled resources (for example, memory and band-

width) or system service routines (such as LSetThreatPriority() or LAddRoute()) –

this is a key element of the LARA++ safety and security architecture.

Since our LARA++ implementation exploits the concept of virtual addressing for

software fault isolation, active components can access critical routines and resources only

through the LARA++ system API. It is therefore sufficient to safeguard the system trap

gate. The system call control described in the previous section is therefore sufficient

to restrain the system interface. It intercepts all system calls originating from active

components and checks with the policing component to whether a call is authorised or

not. As a consequence, the policing component must merely check the access privileges

of the calling component and compare them with the actual system call.

The following paragraph describes the policing mechanism of the prototype imple-

mentation in more detail. When a LARA++ system call is identified by the system

call control, it requests the policing component to authorise the call before it is passed

on. The authorisation request includes the system call identifier (SCID) and the active

component identifier (ACID). While the former is used to identify the system call, the

latter identifies the active component that has originated the call. The ACID (which is

essentially a sufficiently large random number that makes it hard to guess) also serves as

a secret credential that is used to authenticate the active component with the policing

component (see also section 5.8.1).4 In the case of a resource related system call (for

example, LWriteToDisk() and LSetThread-Priority()), the resource quantity or the

scheduling mode/priority must also be included within the authorisation request. The

policing component then looks up the active component data structure (ACDS) and ver-

ifies whether or not the active component has permission to place the system call. The

response to the system call control indicates whether the system call has been authorised

or not.

As a result, the main task of the policing component is to look up the access privi-

leges of a calling component and to validate the component’s authorisation for placing
4Note that system calls with an invalid ACID are strictly blocked. Since a false ACID indicates a

malicious (or erroneous) active component, the system call control immediately terminates such compo-

nents. This prevents malicious components from falsifying component identities which could give them

unauthorised access to system services and resources.

CHAPTER 6. IMPLEMENTATION 132

the system call. Since this is primarily a problem of fast data lookup, which can be im-

plemented based on standard database mechanisms, a ‘proof of concept’ implementation

has not been considered mandatory. Hence, a complete implementation of the policing

component has been deferred to a later time.

6.4 Policy Domains

The policy domains proposed by the LARA++ architecture are considered to be a pure

management unit that defines the scope for security and resource access policies on a

node. These policy domains thus provide a means to offer a different ‘class of service’

to active programs on a single active router. Depending on the policy domain, active

components can have a different resource quantum or access priority (for example, a

higher thread priorities and more memory) and security restrictions (for example, packets

can only be read, not modified or dropped).

Since the LARA++ policy domain layer is only a conceptual layer for the manage-

ment of node-local policies, no implementation is involved. Instead, this logical layer

must be supported by several other components:

First, the component loader, which is responsible for assigning active components

to a policy domain during instantiation of the components, must support this concept.

Based on the component (i.e., the component identity, its producer, and the user loading

the component) and the node-local security policies, the loader chooses a suitable policy

domain for the component. The loader selects the policy domain that offers the best

class-of-service for the component. Once the component is assigned, the loader initialises

the ACDS5 according to the policies defined by that domain.

Second, the policing component, which is responsible for enforcing the node-local

policies on the active processing, must also support the concept of several policy domains.

However, the fact that policy enforcement is primarily based on the optimised policy

representation kept in the ACDSs, hides the use of different policy databases from the

policing component. It is the component loader that is responsible for initialising the

component ACDSs with the policies of the right policy domain.

Although the concept of providing different classes of service for active computations

is an important element of the LARA++ architecture, the current prototype implemen-

tations do not yet support multiple policy domains. Both implementations provide only

the default (or fall-back) policy domain. The reason for this limitation is simply the lack

of time. The implementation is expected to be straightforward as illustrated above.
5As previously described in section 5.8.1, the ACDS is the data structure that is used for the run-

time policing of active components. The data structure is optimised for lightweight authorisation of AC

system calls.

CHAPTER 6. IMPLEMENTATION 133

6.5 Processing Environments

The LARA++ processing environments provide a safe and efficient environment for

active component execution. While safety is provided based on the principles of soft-

ware fault isolation, resource management and system call control, efficiency is achieved

through the use of optimised binary code for active computation and lightweight context

switching between trusting active components.

Both prototype implementations of LARA++ are based on a standard commodity

OS as the underlying router platform. Hence, the concept of virtual memory that is

used by typical user-space processes within Windows 2000 and Linux is the obvious

choice to achieve software fault isolation for the active processing. The virtual memory

manager (VMM), which is typically realised in hardware on the processor, enforces the

protection boundaries between the processing environments and the active NodeOS. Such

a hardware supported solution has the following advantages: reliability and efficiency. It

incurs hardly any processing overhead to achieve safety, and more important, hardware

based solutions are known to be highly reliable.

As a result, both prototype implementations take advantage of the concept of user-

space processes in order to implement the LARA++ processing environments. Unfortu-

nately, on the one hand, this approach has the drawback that the network data have to

be passed back and forth between the active NodeOS in kernel-space and the active com-

ponents in user-space. Although this typically requires a heavyweight copy operation

for each crossing of the protection boundary, the efficient packet channel mechanism

described in section 6.3.3 provides a solution to circumvent this deficiency through a

technique called memory mapping.

On the other hand, the use of standard user processes for the processing environ-

ments has several noteworthy benefits: First, software fault isolation based on virtual

memory enables the safe execution of binary code. This circumvents the need for a safe

programming language (i.e., any programming language for which the LARA++ system

API is available can be used) and avoids the need for costly run-time checks (for example,

type or range checking) or language based constraints (for example, no use of pointers).

Second, the use of standard processes as a basis for the processing environments enables

the use of existing threading mechanism for the active component processing. However,

as will be further discussed in section 6.5.3, the use of an optimised user-level thread

scheduling mechanism is suggested in order to minimise the cost of context switching

between active components.

The remainder of this section describes the implementation of additional process-

ing environment mechanisms, namely the component bootstrapper, active component

scheduler, and system API.

CHAPTER 6. IMPLEMENTATION 134

6.5.1 Component Bootstrapper

The bootstrapping mechanism of the processing environment is responsible for loading

LARA++ components into memory, and to initialise and start them. The bootstrapping

of a component is initiated by the component loader – the system component responsible

for verifying the integrity of a component (i.e., authentication and authorisation) and

choosing an appropriate processing environment for the component (based on the trust

relation of other components).

The component loader initiates the bootstrapping of a component by passing the

component URI to the bootstrapper. The bootstrapper then loads the component into

memory like a shared or dynamic link library. Once loaded, the bootstrapper initialises

the component, and in the case of an active component also activates the component.

For this to work, the components must implement a well-known interface – either the

IPassive or IActive interface. The initialisation routine Initialise() passes the handle

for the LARA++ system API to the component in either case. The interface handle is

required for the components to gain access to the system interface.6

Active components will also receive a secret identifier (ACID) during initialisation.

This run-time identifier is required for the component to authenticate itself when access-

ing the system interface. In the event of a system call, the ACID is used by the policing

component to (hash) lookup the ACDS of the calling component in order to authorise

the system call. Moreover, active components also register with the active NodeOS and

establish the communication channels with the packet classifier.

Finally, if the initialisation of the active component was successful, the bootstrapper

will activate the component by creating a new active thread using the component’s main

routine (IActive.Main()) as the entry function. A component’s main routine typically

starts off with the installation of an initial set of packet filters and then loops to service

the packet channels. This involves the continuous processing of packets received on the

input channel and returning them through the output channel once processed. Like

normal programs, active components terminate when returning from the main routine.

Note also that a watchdog mechanism is frequently used to control the operation of

the active components. If an erroneous or malicious AC (for example, a component that

fails to process/forward packets) is detected, the component is terminated by the active

NodeOS in a safe manner.
6Note that the LARA++ system API is not directly addressable from within the components (i.e.,

dynamic re-linking of the interface libraries would be required).

CHAPTER 6. IMPLEMENTATION 135

6.5.2 System API

The LARA++ system API exposes the programming interface of the processing environ-

ment and the active NodeOS. It enables user components to program the routers through

a set of standard and active network specific system calls. While the standard system

API provides common operating system functionality (i.e., functions to access node-local

resources and configurations), the active network specific API encompasses system rou-

tines, for example, to load, install and configure components, to register packet filters

with the classifier, and to access and send network packets. For further details on the

LARA++ system API, the reader is also referred to section 5.5.2.

Since both prototype implementations of the LARA++ architecture exploit the con-

cept of user-level processes to achieve safety for active components execution, the need

for an interface stub that is part of the processing environment’s address space arises.

For this reason, a user-space stub of the LARA++ system API is provided in form of

a shared or dynamic link library, which is dynamically linked to the processing environ-

ment at start-up time.

At initialisation time of a newly loaded active component (i.e., Initialize()), the

processing environment passes the handle of the user-space stub of the system API

to the active component. The interface handle enables the component to access the

system API through the user-level stub. System calls are either directly resolved within

the stub functions (for example, functionality implemented as part of the processing

environment is directly addressed), or mapped onto standard system calls or LARA++

specific NodeOS routines in the kernel by means of a software interrupt.

Since the LARA++ system call control component in kernel-space polices all system

calls of a LARA++ process (even standard operating system calls such as WriteFile(),

SetProcessPriority(), etc.), there is no need for the active NodeOS to re-implement

these service routines.

The current prototype implementations of the LARA++ architecture support only

a small set of system calls in order to demonstrate the basic functioning of the system

API. In the long term, however, it is planned to fully implement the NodeOS system API

specified by the DARPA active network working group [ANW99], which provides a richer

interface (for example, for file-system and memory access) and better error reporting.

6.5.3 Active Component Scheduler

Since the LARA++ architecture envisages an active node to provide the functionality of

conventional routers and beyond based on the composition of many active components,

the need for a lightweight scheduling of active components is inherent.

It is expected that many of the active components will be developed by well-known

CHAPTER 6. IMPLEMENTATION 136

and trustworthy component providers (for example, by companies like Cisco or Mi-

crosoft). This enables the grouping of active components with mutual trust relationships

into a single and hence efficient processing environment. The fact that context switching

among components running in the same address space is far less expensive than context

switching among different address spaces (see section 7.4.1 for experimental results),

allows LARA++ to offer a very lightweight solution for active components sharing a

processing environment.

As a result, the LARA++ architecture proposes the use of a very lightweight schedul-

ing mechanism for components executed within the same processing environment. The

scheduler minimises the cost of context switching between active components by avoid-

ing expensive boundary crossings between the processing environment and the system

kernel for every scheduling decision. The scheduler rather operates internally to the

processing environment that directly implements the lightweight component scheduler.

The component scheduler supports three complementary scheduling algorithms that

can be used in conjunction with each other to achieve maximum performance.

Cooperative Scheduling: This enables active components to actively de-schedule a

thread in order to release the processing resources immediately (before the schedul-

ing quantum expired). The scheduler, in turn, allocates the processor straight

away to another ‘waiting’ thread of the same processing environment. Coopera-

tive scheduling is triggered by calling the component scheduler directly through

the LARA++ system call LDeScheduleNow().

Pre-emptive Scheduling: This mode ensures that scheduling of active components

running within the same processing environment is not impeded by misbehaving

components that do not cooperate in the scheduling process. Such components

would otherwise lock the overall processing environment. Support for pre-emptive

scheduling also takes the burden of explicitly releasing the processing resources

off the active program developers. Note, however, that pre-emptive scheduling is

slightly more costly than cooperative scheduling, as the entire processing state of

the thread (i.e., all processor registers) must be captured, whereas only a subset of

the processing state (for example, the index registers such as the instruction and

stack pointer) is required in the cooperative case.

Restart Scheduling: This scheduling mode is a special case of cooperative scheduling.

The idea here is that short tasks (for example, the processing of certain events or

packets) that easily finish within one scheduling quantum do not have to capture

the state at the end of the task, as the thread can simply restart (or start at a

pre-captured check point) each time it is activated. The advantage is that the cost

CHAPTER 6. IMPLEMENTATION 137

of scheduling is further reduced by avoiding state capture at the end of the task.

Due to the special nature of this mode, however, it is only useful for the processing

of short tasks.

The Windows 2000 implementation of LARA++ provides the active component

scheduler in form of a link library that is dynamically linked to the processing environ-

ments. The library exports functions to create, terminate and (de-)schedule user-level

threads. These functions can thus be directly invoked through the user-level stub of the

LARA++ API – without the need of a system call.

Pre-emptive scheduling is enabled by means of a special kernel-level timer compo-

nent7. The component registers with the system timer to get called within the interrupt

service routine of the timer interrupt. When called by the timer interrupt service rou-

tine, it checks whether or not the current process is a registered LARA++ processing

environment. If so, it sets the instruction pointer of the active thread to the address of

the active component scheduler. Consequently, when the interrupt service routine com-

pletes, the active thread resumes its processing at the start of the scheduling routine.

This in turn captures the state of the current user-level thread and schedules another

‘waiting’ thread.

6.6 Active and Passive Components

Active and passive components are the software modules that are downloaded onto

LARA++ nodes. They are the units of active code that are executed within the pro-

cessing environments. While active components are the actual active programs that

are executed on the node, passive components provide merely support functionality for

active components like software libraries.

As previously described, LARA++ components are either distributed in the form of

source or binary code. In the former case, components are just-in-time compiled upon

arrival on the target node, whereas in the latter case, components are distributed in

binary form as shared or dynamic link libraries. Once checked for code integrity (based

on code signatures), components are loaded into a processing environment alongside

other components that share a mutual trust relationship (see also section 5.5.2).

Since the LARA++ prototype implementations exploit standard link library tech-

niques and execute active code within user-space processes, components can be developed

and tested based on standard development tools (for example, the Visual Studio IDE,

or the GNU compiler and debugger).
7The kernel-level timer component is implemented as a standard Windows 2000 device driver.

CHAPTER 6. IMPLEMENTATION 138

6.6.1 Implementation Process

LARA++ components are implemented as shared libraries under Linux or as dynamic

link libraries under Windows 2000. Developers can therefore choose among a range of

developments tools (for example, compilers and debuggers) available for these platforms

and pick their favourite programming environment.

As active components can be loaded and executed in the form of binary code, the

implementation of the components is conceptually independent from any particular pro-

gramming language. Note that the LARA++ architecture does not build safety and

security upon a specific programming language or certain language constraints (such as

strong typing, range checking, etc.). However, since the LARA++ system API must be

linked to the component at build time of the shared library or DLL, only programming

languages for which the system API is available can be used. At the present time, the

system APIs of the current LARA++ prototype implementations are only available for

C and C++.

In order to allow the component bootstrapper to initialise and activate the compo-

nents, they must implement a minimal well-known interface. Depending on the type of

component (active or passive), a different interface must be exposed. Active components

must implement the IActive interface, whereas passive components need to implement

the IPassive interface (see section 5.5.1 for further details). Both interfaces expose an

initialisation routine (Initialise()), which is called by the bootstrapper at loading

time. The IActive interface must also implement a main routine (IActive.Main()).

In order to support LARA++ component developers in the implementation process,

template source files for active and passive components are provided for C++. The

component templates implement stub functions for the IActive or IPassive interfaces.

They include routines for component registration with the active NodeOS, packet filter

installation, and standard packet channel processing.

6.6.2 Debugging and Testing

A special processing environment and active NodeOS that can operate on the develop-

ment machine (for example, standard user work station) have been developed in order

to enable component programmers to test and debug their components using standard

debugging tools. The idea here is that developers run a minimal LARA++ environment

on the development machine to directly test and debug the software.

Providing such a minimal environment in the case of the current LARA++ prototype

implementations is relatively easy as both prototypes are based on standard operating

systems, which allows the development platforms to be identical to the router platform.

As a result, component developers can simply install the debugging processing envi-

CHAPTER 6. IMPLEMENTATION 139

ronment (like a normal user-space application) and active NodeOS (which consists of

a set of device drivers under Windows 2000 or kernel modules under Linux) on their

development machines.

However, since the computation of an active component is typically driven by the

data passing through the active router, additional software that generates data packets

matching the filters of the tested active component is required. This can be achieved

either by a local traffic simulator or through an external program that produces the

respective traffic patterns and routes them through the development machine.

These debugging and testing capabilities have proven to be a very useful feature. It

allows the developer to carry out fundamental testing of active components on a real

system and with genuine data traffic rather than simply through emulation or even

simulation. Nevertheless, since the testing is carried out in an isolated environment on

the developer’s workstation, the level of testing is still limited. Remote testing (and

possibly even debugging) of active components within real active network nodes, where

further unexpected problems such as unpredicted feature-interaction issues are expected,

is subject to future research.

6.6.3 Example Active Components

This section briefly outlines the implementation of three example active components.

These examples demonstrate how simple LARA++ components, implemented as normal

user-space libraries, can provide useful network services. The examples also illustrate

the scope of active programmability based on the LARA++ component architecture –

ranging from a general network service to the implementation of a building block of the

LARA++ architecture itself.

6.6.3.1 Local Congestion Control

This section demonstrates how LARA++ active components are implemented based on

the local congestion control example introduced in section 5.2.1.

The trivial congestion control mechanism simply drops packets of lower priority ser-

vice classes when congestion builds up. A queue length threshold for each service class is

used to determine which packets to drop during congestion. Thus, if the queue length of

an output queue exceeds the threshold of a particular service class, all packets of a lower

priority service class that would be sent on this interface will be dropped. For example, if

the threshold rises above the threshold of the premium CoS (i.e., THRESHOLD PREMIUM),

packets of lower CoS will only be sent if the threshold of the corresponding CoS is not

(yet) exceeded.

The following code fragment shows the core sections of the source code for the ex-

CHAPTER 6. IMPLEMENTATION 140

ample active component. It illustrates how the LARA++ system API is used. The

IActive.Main() function is called when the active component is instantiated. After

the registration of the active component with the active NodeOS and the installation of

the packet filter(s), the active thread loops around the packet servicing functions (i.e.,

receive, send or drop routines) until the component terminates. In the while{} loop,

the component blocks on the LReceivePacket() call until any packet that match the

packet filter (i.e., packets that include the specific CoS mark) is received and then de-

cides whether to send (LSendPacket()) or drop (LDropPacket()) the packet based on

the congestion condition and the packet’s CoS.

ACDLL API int ACMain(void)

{
// Initialise variables & define packet filter(s)

[...]

if (LRegisterAC(&ACInfo) == LARA FAILURE)

return LARA FAILURE;

if (LInsertPacketFilter(pFilterList) == LARA FAILURE)

[...]

while (Run) {
pLaraPacket = LReceivePacket(&ACInfo);

pBuffer = LGetPacketBuffer(pLaraPacket, &bufLen);

pIPHeader = pBuffer + sizeof(TEthernetHdr);

// get output interface

OutputIF = LRouteLookUp(pIPHeader);

// get current length of output queue

QueueLen = LGetQueueLength(OutputIF);

if (pIPHeader->Type == IPV4)

CoS = GetCoSMarkIPv4(pIPHeader);

else

[...]

if (QueueLen < THRESHOLD PREMIUM)

// no congestion; service all packets

LSendPacket(&ACInfo, pLaraPacket);

else

if (QueueLen < THRESHOLD GOLD && CoS == PREMIUM)

// output queue fills; still serve premium CoS

LSendPacket(&ACInfo, pLaraPacket);

else

[...]

else

// output queue full, drop low CoS packets

LDropPacket(&ACInfo, pLaraPacket);

CHAPTER 6. IMPLEMENTATION 141

}
LUnregisterAC(&ACInfo);

return LARA SUCCESS;

}

6.6.3.2 Server Load Balancing

A common problem for today’s businesses and corporations is to provide scalable online

services (such as Web or FTP services) to their customers. Providing appropriate net-

work bandwidth to the servers is in many cases not sufficient, as the servers become the

bottlenecks.

This section describes an example active LARA++ component that allows an active

edge router to load balance network traffic, or in other words server requests, among a

number of servers. The basic idea is to exploit the LARA++ active router technology to

distribute server requests (i.e., TCP connections or UDP flows) among available servers

based on round-robin scheduling. Since load balancing must be fully transparent to the

client applications, the servers in the cluster must have an identical setup. The active

router provides a separate sub-network for each of the servers on one of its interfaces using

the same network address. Such a peculiar network setup, however, confuses standard

routing towards these sub-networks. As the server networks use identical addresses, the

router cannot route packets to the server hosts based on the network address anymore.

Instead packet routing to these specialised sub-networks is based on the source address

of the packets for the lifetime of a “connection” or flow.

So, when a “new” server request (i.e., connection or flow) is received at the active

router, the router selects a server (based on a round-robin approach) and adds a new

entry for this client into the special routing table. The entry consists of the triple (client

IP address, interface, timestamp), where the client IP address is used as the hash key.

Thus, all packets received from the corresponding client will be routed out the same in-

terface and hence reach the same server. The router detects a “new” request/connection

based on the hash table. If no entry or a stale entry for the client address exists, a new

server is determined and another route is added. An entry is considered stale when the

timestamp has not been updated for a configurable timeout period. To ensure proper

behaviour even for long-lived connections, the router must update the timestamp of the

routing table entry each time it uses a particular route.

It should be noted that that this simple approach does not claim to ‘exactly’ load

balance server requests. It is rather an approximation. Since there is no mechanism to

determine precisely the end of a request, some error might be introduced with respect

to the load balancing accuracy when the same client initiates several requests within the

lifetime of a route table entry. However, proper operation is guaranteed at all times.

CHAPTER 6. IMPLEMENTATION 142

6.6.3.3 Component Loader

The LARA++ component loader can be implemented as a “standard” active component.

Since it would be this LARA++ component that enables the loading of other compo-

nents, it would have to be installed by default on each node. The bootstrapping of the

loader component could be done automatically during start-up of the active router.

The component requires access to privilege service routines (for example, to authen-

ticate, authorise and load components) within the active NodeOS, and must therefore be

assigned to the system component group. Consequently, the loader component will thus

request registration as a system component with the active NodeOS during initialisation.

At start time, the component inserts the packet filter(s) required to intercept the data

traffic of the supported code distribution protocol(s). The filter based network access

mechanism allows the component loader to simply integrate support for multiple code

distribution protocols into a single “application”. Conversely, the LARA++ component

architecture also encourages the use of several independent loader components (i.e., one

for each distribution mechanism).

Upon receipt of a code stream, the loader reassembles the component code in per-

manent memory and verifies the code checksum. It then checks the authentication and

authorisation of the component by calling the respective system service routines. Com-

ponents that are distributed in source code form must also be just-in-time compiled at

this point.

Finally, if the component is valid and approved, the loader initiates the bootstrap-

ping of the component. As part of this process, the NodeOS identifies an appropriate

processing environment for the new component based on the trust relationships to com-

ponents currently running on the node. If no appropriate PE exists, a new one will be

spawned. In turn, the component loader signals the bootstrapper of the selected PE to

instantiate the new component.

Note that although the main program logic of this component can be implemented

as an active LARA++ component in user-space, the component relies heavily on system

service routines and the policing support that is provided through the system interface.

For example, signalling the bootstrapper of another PE to initiate the instantiation of a

new component is achieved by means of a system call. This has the advantage that access

control can be done through the default policing mechanism of the system interface and

thus makes the need for a special access control mechanism within the PE superfluous.

CHAPTER 6. IMPLEMENTATION 143

6.7 Summary

The realisation of the prototype active router platforms described in this chapter does not

attempt to provide a complete implementation of the LARA++ architecture previously

described in chapter 5. For example, significant parts of the security and policy frame-

work, which are both key to the active router architecture, have not been implemented

due to the overall complexity of the system and the time constraints. The objective

was rather to demonstrate the feasibility of the architecture through a ‘proof-of-concept’

implementation of the LARA++ specific mechanisms such as the packet classifier, the

packet channels, the system call control, the active component scheduler, etc. (the major

components).

The implementation of the various mechanisms is described according to the overall

structure of the LARA++ architecture, namely the active NodeOS (section 6.3), the

policy domains (section 6.4), the processing environments (section 6.5), and the active

and passive components (section 6.6). The last section focuses in particular on the

implementation process, and the debugging and testing of LARA++ components. It

also describes a range of example components.

Chapter 7 proceeds with the evaluation of the architecture. The LARA++ proto-

type implementation described here serves as the reference platform for the quantitative

evaluation of the architecture.

Chapter 7

Evaluation

7.1 Overview

This chapter presents the evaluation of the LARA++ active router architecture and

prototype implementation as described in chapter 5 and chapter 6 respectively.

Since the main objective of this work was to design a novel component-based active

router architecture from the ground up, it has not been feasible to fully realise such a

system. As a consequence, the evaluation of the LARA++ architecture is to a large

extent a theoretical analysis. Based on a concrete case study and several example ap-

plications, section 7.3 evaluates how LARA++ fulfils the objectives and requirements

presented in chapter 4.

The final part of this chapter (section 7.4) evaluates the prototype implementation of

the LARA++ architecture. The performance analysis examines the individual compo-

nents and mechanisms that constitute the LARA++ platform first, and then combines

these results analytically in order to estimate the overall performance of the prototype

active router.

7.2 Evaluation Methods

In general there are two methods used for the evaluation of research contributions such as

those presented within this thesis, namely qualitative and quantitative evaluation. Since

the contributions here include both an architectural design and its implementation, a

combination of the two approaches has been employed throughout this chapter.

The main focus of the evaluation lies in the qualitative aspects of the LARA++ archi-

tecture. In particular, since the main contribution of this thesis is the novel component-

based architecture for active routers, a qualitative evaluation of the concepts and design

of the LARA++ architecture has been regarded as more meaningful.

144

CHAPTER 7. EVALUATION 145

Since it has been feasible to implement only a subset of the overall LARA++ archi-

tecture, a quantitative evaluation of the entire system cannot be provided at this stage.

Nevertheless, section 7.4 provides a quantitative evaluation of the key components and

mechanisms. Finally, the results of this micro-level analysis are combined to estimate

the overall system performance of the LARA++ prototype implementation.

7.3 Qualitative Evaluation

This section presents a qualitative evaluation of the LARA++ architecture. Issues re-

garding the design and concepts behind the LARA++ active programmability are con-

sidered here.

Firstly, the case study that is used to evaluate the features and usability of the

LARA++ architecture is examined. Subsequently, LARA++ is evaluated according to

the success or failure of the requirements introduced in chapter 4.

7.3.1 Case Study – An Evaluation Scenario

In order to evaluate the LARA++ architecture, an example case study is introduced.

The case study on ubiquitous Internet service provisioning within the city centre of

Lancaster, and the University campus, uses LARA++ active nodes for the deployment of

new network service and the integration of enhanced router functionality. In particular,

advanced network services that provide secure access control for the wireless network

and fast handoff support for roaming users are considered.

7.3.1.1 The Setting

The underlying network infrastructure for this undertaking is currently being deployed

as part of the Mobile IPv6 Testbed collaboration between Cisco Systems, Microsoft

Research, Orange Ltd., and Lancaster University [MSR01].

As illustrated in Figure 7.1, the approach of a wireless overlay network has been

taken. Broadband wireless LAN technology based on IEEE 802.11b [LAN99] is used

as the primary network access technology (due to the high data rates). GPRS [Nok98]

and Bluetooth [For01b] are used alternatively. While GPRS provides a low-bandwidth

fall-back solution for “remote” locations without wireless LAN coverage, Bluetooth is

used for short range communication in hot-spot areas.

It is envisioned that LARA++ active routers will form the core elements of this

service network. A dedicated active router will be deployed per network district1 for fine-

grained control of the network (for example, access control, accounting, and caching).
1Districts define the boundaries for administrative domains.

CHAPTER 7. EVALUATION 146

Gigabit Uplink to

Lancaster University

Gateway Authentication
Server

Main Campus

Router

Lancaster Wireless Overlay Network

Access Router

Active Router

Base Station

District

GSM/GPRS

Network

GSM/GPRS

Pico Cell

Bluetooth

Base Station
WLAN

Base Station

WLAN (802.11)

Base Station

Wireless

Point-to-pointSDSL

ADSL

Figure 7.1: The Mobile IPv6 Testbed – A wireless overlay network environment for
research in to next-generation mobile systems, services and application.

As shown in Figure 7.1, these access routers are linked back to active routers further up

in the hierarchical backbone structure by means of point-to-point wireless links, DSL, or

FastEthernet. The top-level router in the hierarchy, called the gateway router, connects

the access network with the core router of the campus backbone via a GigabitEthernet

link. The use of an active router based gateway is expected to be beneficial as firewall

controls can be flexibly customised and new control mechanisms can be dynamically

deployed.

GUIDE II [GII01], the successor project of the well-known GUIDE project [DCMF99,

CDM+00], is one of the research activities making use of the Testbed infrastructure.

Unlike the initial GUIDE project (which aimed at mobile services and applications for

Lancaster tourists as they explore the historic city), the goal of GUIDE II is to provide

general-purpose, ubiquitous services and applications to Lancaster citizens whilst on the

move around the city centre.

7.3.1.2 The Challenges

A key challenge of the GUIDE II project is to “open up” the network and to provide

public services (including Internet access) to the general public. Since the deployment

CHAPTER 7. EVALUATION 147

of wireless network technologies in public places bears the danger that unauthorised

people use the network resources, it is important to introduce appropriate access control

mechanisms. A secure user authentication and authorisation mechanism, and a reliable

access control mechanism, are vital – particularly for wireless LANs, where the absence

of comprehensive security provision has been a hindrance to its widespread adoption.

Another fundamental challenge of the GUIDE II project is to provide ubiquitous

network connectivity. The various link technologies deployed to achieve this goal are

integrated using IPv6 as the common inter-network protocol. IPv6 serves also as the

inter-district network protocol that connects the individual administrative domains. The

mobility extensions for IPv6 [Per01] allow users to roam between the different admin-

istrative domains and/or network technologies. The concept of a permanent “home

address” is applied to achieve location transparency. However, since real-time applica-

tions such as real-time audio and video streaming have very stringent QoS requirements,

special network support to enable smooth handoffs for roaming users is required.

Since existing proposals for both of these example problems rely on enhanced sup-

port in network routers (which is not yet provided by most router manufacturers), it can

be argued that they can be addressed more elegantly through the use of active network

technology. The following section will demonstrate how the LARA++ active router ar-

chitecture provides the flexibility and extensibility required to cope with these problems

in an efficient and elegant manner.

7.3.1.3 The Solutions

This section presents a solution based on the LARA++ active router architecture for

both of the problems outlined above. The focus here lies not on the solution itself, as

the concepts behind the solution are not specific to active networks and therefore can

be realised otherwise, but on the fact that LARA++ provides a generic platform that

is sufficiently flexible and extensible to resolve those problems (and many more). The

combination of the two problems is of special interest as it demonstrates how different

users or groups of users can program a LARA++ router and thereby take part in the

cooperative process of service composition.

Network-level Access Control

The access control mechanism developed for the Mobile IPv6 Testbed is based on the

principles of packet marking and packet filtering. Data packets are tagged on the client

terminal before they leave the node. Based on the presence of the tag (access token)

and the credentials associated with the token, access to the network is either granted

or denied. A complete description of the access control architecture and its realisation

based on LARA++ active routers has been published by Schmid et al. [S+01, SFW+01].

CHAPTER 7. EVALUATION 148

Although this access control mechanism involves several elements (i.e., authentication

protocol, authentication server, extension of client network stack, etc.) in order to

achieve a high-level of security, reliability, scalability, and performance in a roaming

network, the key component in this context is clearly the access router. These routers are

responsible for controlling the data traffic passing the node (“access gate”) based on the

access token in the upstream packets (originating from the clients) and the destination

address in the downstream packets (destined for the clients).

In conventional networks, where routers are closed commercial systems, such value-

added functionality cannot simply be introduced when needed. The service provider is

stuck until the router manufacturer provides a new software image with the required

functionality. Using the LARA++ active and programmable network technology, how-

ever, enables the service provider in this scenario to roll out such a service without the

delays caused by slow standardisation processes and software production cycles of the

router manufacturer. Customers of conventional router technologies are simply tied to

the manufacturer as no other company can develop software for the “closed” system,

whereas active network technologies encourage third party software development (and

hence competition) by defining a programmable interfaces to the router hardware. For

example, the LARA++ model enables end users to develop new network functionality

themselves (if they have the know-how and resources) or to simply buy the required

functionality from an active component provider.

The access control functionality of the access routers can be implemented in various

ways, ranging from single to multi component solutions. A solution based on three active

LARA++ components is described here:

• The Control Component implements the access control protocol that is required to

communicate the access control information (i.e., valid access tokens, session keys,

etc.) from the authentication server to the access router. Based on periodic access

control updates, the access router maintains an access control list that provides

the basis for the filtering components.

• The Upstream Filter Component ensures that only authorised client systems gain

access to the network beyond the access router. It therefore intercepts all traffic

originating from the wireless clients and checks the validity of the access tokens

against the access control list. While packets with an invalid or out-dated token

are strictly discarded, authorised packets are forwarded after the removal of the

access control information.

• The Downstream Filter Component is responsible for controlling the traffic sent to-

wards the wireless terminals. It ensures that only traffic to authorised client nodes

CHAPTER 7. EVALUATION 149

is forwarded by the router. For this, the component intercepts all traffic destined

to any of the wireless networks and checks whether or not the final destination

address has a valid authorisation.

This example application exploits only a subset of the LARA++ features. For ex-

ample, since the whole access control architecture is a managed and long-term service

provided by the network service provider/administrator, LARA++ is mainly used as a

means to add value-added functionality (i.e., packet filtering based on the proprietary

tagging approach) to the routers. Features such as the remote loading mechanism and

fast component instantiation support provided for highly dynamic service deployment,

or the high-level security architecture incorporated to enable end-user programmability

are not necessary here. Conversely however, these features clearly do not weaken the

system. The foremost feature, for example, simplifies the dynamic roll-out of the ser-

vice in the first place and enables dynamic service extensibility through replacement of

components when newer versions of the software become available. For example, this

dynamic service deployment capability enables the service providers to extend the access

control service dynamically by an accounting component or to introduce QoS support

throughout the access network at later times.

Network Support for Fast Mobile Handoffs

A key characteristic of the Mobile IPv6 Testbed is the segmentation of the network

into many (small) administrative domains (districts). The key benefits of this design,

namely high scalability and fine-grained access control (i.e., potentially on a per-cell

basis), have been fully explored by Schmid et al. [SFW+01]. Moreover, such a micro-

cellular network structure enables the Testbed to function as a “real” simulator of third

and fourth generation mobile networks.

However, as a consequence of the highly segmented network infrastructure, support

for smooth network handoffs becomes especially important. As users may frequently

change layer-3 networks when moving between the wireless cells, location transparency

and smooth network handoffs are critical for sustaining any active communication chan-

nels. Smooth network handoffs (which imply minimal delay) are especially indispensable

for QoS sensitive communication, such as multimedia streaming or interactive services

(for example, VoIP).

A thorough analysis of the mobility support within the Mobile IPv6 protocol has

revealed that Mobile IPv6 is purely a routing protocol for end systems; network routers

(apart from the home agent) are not involved. As a result, the delays caused by network

handoffs can be unnecessarily high due to the fact that they require a correspondent node

CHAPTER 7. EVALUATION 150

(any IPv6 device communicating with a mobile device) to receive a Binding Update2

message, before this can adapt the routing to the mobile’s new location. Note that

this adds at least the delay of one round trip time (between the mobile node and the

correspondent node) to the handoff latency. As typical latencies of wide area links can

be as high as 400 ms, this can result in a handoff performance that is unacceptable for

multimedia applications. Figure 7.2 illustrates this inefficiency and suggests a solution

based on network-side computation. The router in this example could simply reroute the

traffic sent to the mobile node’s old location to its new location based on an approach

called network address translation [EF94].

NetAddr A

NetAddr B

A

B

A

A

A

A

A

AA

Binding

Update

Move(1)

(2)

BA

Why not

???

(3)

Figure 7.2: Mobile IPv6 Routing Convergence Time: After move of mobile device (1),
it sends binding update to inform correspondent node (2). It takes ≥ RTT until data
flow will reach the mobile’s new location. Why can’t the router immediately reroute the
traffic to the new destination (3)?

Although the solution outlined in Figure 7.2 is straightforward and seems to be an

ideal solution for smooth handoffs, for conventional networks this would require the stan-

dardisation of a protocol extension to Mobile IPv6 that involves the routers of the access

network. Since the Mobile IPv6 protocol does not yet comprise normal routers (apart

from the home agent), such an extension would drastically change the overall protocol

semantics. Furthermore, the protocol extension would first require the standardisation

body to approve it, router manufacturers to implement it, and network administrators

to deploy the new software releases before the fast handoff mechanism could be used.
2A Mobile IPv6 control message sent to the correspondent node and the home agent to indicate the

mobile node’s new location (care-of-address) [Per01].

CHAPTER 7. EVALUATION 151

Other proposals that address this inefficiency [C+96, C+00, MS00] also require ex-

tensions to the Mobile IPv6 standard and/or specialised support within the network (for

example, proxy nodes).

Conversely, active networks allow this problem to be resolved transparently on the

router where the root change occurs (without any modification to the network or stream-

ing protocol) when a smooth handoff is really needed. Note that fast handoffs are only

needed for certain QoS sensitive applications. Active routers can be dynamically pro-

grammed on a per-handoff basis to reroute any data traffic incorrectly routed to the

mobile device’s old location to its new point of attachment without delay. This simple

technique provides a means to repair the incorrect routing locally on the router where the

route change takes place, until the Mobile IPv6 protocol responds to the route change

caused by the mobile node’s movement.

The remainder of this section presents the design of the smooth handoff solution

based on a simple active LARA++ component that minimises the handoff latency of

mobile devices in roaming networks:

The Flow Routing Component (FRC) introduces short-lived Mobile IPv6 function-

ality into active routers, such that they can actively take part in the mobile routing

(i.e., optimise the handoff performance) until the standard Mobile IPv6 routing pro-

tocol converges. Thus, upon a network handoff the mobile device injects (or simply

invokes) the FRC into active LARA++ routers along the reverse transmission path3.

After instantiation on a LARA++ router, the FRC checks whether or not the route

change for the particular flow takes place on this router. If not, it terminates imme-

diately. Otherwise, it starts re-routing any packets misrouted to the mobile node’s old

location to its real location by means of network address translation [EF94]. Since the

component offers only a temporary route optimisation (until the mobile routing proto-

col converges), the FRC is very short-lived. It terminates typically a few seconds after

instantiation (as soon as packets for the mobile node’s old address stop arriving). For a

more thorough description of this smooth handoff mechanism and its realisation based

on the LARA++ component technology, the reader is referred to prior publications of

the author [SFSS00b, SFSS00a].

This second example application for LARA++ differs significantly from the access

control application introduced above. The flow routing component provides a very spe-

cific (tied to a particular flow) and short-lived (only for the convergence time of the

mobile routing protocol) service on the network nodes. Because of its nature, the appli-
3Note that in the case of a wireless network, the access network is typically structured as a hierarchical

network, which implies that the route change for a mobile device roaming between cells (of the same

provider) typically takes place on a router of the hierarchical access network (i.e., close to the mobile

device).

CHAPTER 7. EVALUATION 152

cation has very stringent requirements regarding the dynamic loading and instantiation

of the component. Since the service has very rigid timing constraints, dynamic loading of

LARA++ components and code instantiation must be very fast. Furthermore, the fact

that the service is user initiated (upon a handoff of the user’s mobile terminal) requires

support for safe and secure programmability of LARA++ nodes for common end-users.

This example again demonstrates the fundamental capabilities of the LARA++ ar-

chitecture, namely flexible and transparent extensibility of router functionality based on

the concept of packet filters. The component-based handoff optimisation neither relies

on any modifications to the MIPv6 protocol nor requires installation of any application

specific support on the active router.

7.3.1.4 Discussion

This section analyses the advantages and disadvantages of the LARA++ active router

architecture compared to other active network solutions based on the case study intro-

duced above.

The foremost contribution of LARA++ over other active network solutions is its

flexible service composition framework. It is this enabling technology that allows active

solutions for both problems described above (and many more!) to cooperate with each

other on a single active node. It enables independent user groups (i.e., service providers

and end users) to extend the functionality on the active router and provide a cooperative

service composite (without knowing about each other’s services).

The use of packet filters and the classification graph structure as a transparent means

for the integration of active services allows independent users to dynamically insert

and remove components into and from the service composite. The classification graph

provides the semantics for a structured integration of services. It has the potential to

reduce the feature-interaction problem resulting from collaborative use of independent

active components.

In order to emphasise the actual contribution of LARA++, the remainder of this sec-

tion will analyse other active network approaches and compare how they would perform

in the example scenario.

While the integrated approach to active networking replaces traditional data packets

by so-called active capsules (which include both code and data), such active services

require (by definition) modifications to the end systems. Depending on the implemen-

tation, either the end applications or the end nodes’ OS need to be altered in order to

insert the active code in the data streams. And although the active capsules approach

seems to be a perfect means for the upstream access control application (i.e., extension

of end system software is required anyway in order to accomplish the packet tagging),

CHAPTER 7. EVALUATION 153

downstream access control based on active capsules is totally infeasible. It would de-

mand that all correspondent nodes of the mobile systems (i.e., potentially all nodes on

the Internet) require amendment to their application or system software. As a conse-

quence, it becomes clear that integrated active network solutions are not suitable for our

example scenario. In fact, this general limitation of the integrated approach suggests

that it is only practical in controlled environments and for specialised applications.

As a consequence of this general drawback of integrated active network solutions,

the remainder of this section compares LARA++ only with other discrete approaches

(see section 3.2.2) regarding their performance in this example scenario.

An examination of SwitchWare (section 3.2.2.1) – the pioneer programmable switch

approach – has revealed that a sophisticated service composition framework for the

active extension is missing. It uses a simple de-multiplexing technique based on the

active packet content (for example, identifier of active extension). In fact, since the

active extensions are primarily designed for use in conjunction with its integrated active

packet approach, SwitchWare would suffer from the same drawbacks as fully integrated

solutions.

In theory, both the Router Plugins architecture (section 3.2.2.7) and the CANEs/

Bowman active node architecture (section 3.2.2.3) provide sufficient service composition

capabilities to compose active services for either of the example scenarios described

above. Both architectures apply a plug-in approach to support service composition,

whereby an underlying data structure or program defines the logic (“glue”) for the plug-

in bindings. However, the fact that the slot logic is defined by a static structure or

program (see also section 3.2.2.3), makes those approaches ineffective in practical terms.

For example, each time a new type of protocol or service is required, a new underlying

structure or program must be introduced. Unfortunately, both architectures lack a

dynamic mechanism for that. While the Router Plugins architecture limits extensibility

of the plug-in model to the compile time of the kernel, CANEs/Bowman allows manual

integration of new underlying programs. In the latter case, it is still unclear though

to what extent the classifier, which assigns arriving packets statically to one or more

underlying programs, limits the flexibility of the composition framework, as links between

those conceptual divides are not considered.

An analysis of application level active network approaches such as FunnelWeb (sec-

tion 3.2.2.8) has revealed similar problems to those of integrated active network solu-

tions. These systems create a virtual overlay network on top of the existing IP network,

whereby the active routers are simply implemented as user-level applications. As a con-

sequence, specialised end-user applications (or modifications to existing applications)

that explicitly address the first hop application level router are required. While such

systems have proved to be useful for research purposes and experimentation with ac-

CHAPTER 7. EVALUATION 154

tive network applications4, they are arguably hard to deploy effectively in real network

environments if a complete end-to-end network solution is needed.

Another discrete approach called Joust (section 3.2.2.4), which provides the under-

lying platform for liquid software [HBB+99], suffers from a similar problem. Extended

network functionality or services must be explicitly addressed within the actual data

packets. The fact that liquid software provides a service equivalent to a dynamically

configurable RPC, which allows the applications to tailor the client/server interfaces

to the task at hand, ties this service to specialised liquid software applications. The

application-controlled service compels the application software to encapsulate RPC re-

lated data (for example, RPC identifier and call parameters) into the actual data flows.

The modular Click router (section 3.2.2.6) is another very flexibly configurable router

architecture that enables extensibility of router functionality as required for the example

active services. However, since configurability of the Click router functionality is limited

to the compile-time of the router image, dynamic introduction of new services is not

possible. For example if the service provider would like to add an accounting mechanism

to the access control service later, it would have to re-compile the router software image

first.

The LANode active router platform (section 3.2.2.8) differs from the other approaches

as it makes a clear distinction between the control plane and data plane of the router

and limits the programmable interface to the control plane. Unfortunately, this has an

adverse impact on its usability in this context. Since the core functionality of the example

applications (i.e., packet filter, network address translation) must be provided on the

data plane, which does not provide a programmable interface, LANode is not an ideal

platform. The required data plane functionality would have to be manually introduced

through system administrators installing new software modules on the routers.

The Protocol Booster approach (section 3.2.2.8) supports transparent integration

of active processing elements inside the network in order to improve the performance

of a protocol. Consequently, this approach would provide an ideal solution for the

handoff optimisation application as it is specifically designed as a means to “boost” the

performance of network protocols inside the network. A drawback of the protocol booster

architecture is that program modules are directly executed in kernel-space (without

sandboxing). As a consequence, strong authentication mechanisms are absolutely vital

when loading the boosters in order to prevent malicious code from disrupting the network

node. Unfortunately, this would conflict with the fact that in this case study arbitrary

end users (without a security association) would need to download the smooth handoff

booster. In addition, it is unclear from the design documentation how the protocol
4The simplicity of application level active router implementations usually facilitates fast prototyping.

CHAPTER 7. EVALUATION 155

booster approach deals with booster interaction problems since explicit composition

structures (for example, an underlying program or a booster graph) are lacking.

The remaining discrete active router architectures introduced in chapter 3, namely

LARA and ANN, are both neglected in this comparison as the main focus of these

architectures lies in the hardware design of the routers.

7.3.2 Requirement Fulfilment

This section recaps the architectural requirements of active routers previously introduced

in chapter 4 and evaluates whether they have been successfully met by the LARA++

architecture. The list of general active network requirements, consisting of the vital (or

class A) requirements and the long-term (or class B) requirements, has been reduced as

the LARA++ specific requirements (L.X) encompass most of the general requirements.

Table 7.1 lists the relevant requirements and indicates to what extent the individual

requirements have been satisfied. Since the table gives only a rough indication of success

or failure, a more thorough discussion complementing these findings follows:

Requirement Description Satisfied?

L.1 Flexible Extensibility Yes

L.2 Moderate Performance Partially

L.3 Highly Dynamic Programmability Yes

L.4 Easy Usability Yes

L.5 Safe Code Execution Yes

L.6 Secure Programmability Yes

L.7 Scalable Manageability Yes

A.5 Resource Control Yes

B.1 Interoperability No

B.4 Business Model Yes

B.5 QoS Support Under Investigation

Table 7.1: LARA++ Compliance with relevant Active Network Requirements

Requirement L.1, which demands flexible extensibility of router functionality through

active programmability, is one of the primary goals pursued by the architectural design

of LARA++. While support for data plane programmability through transparent inte-

gration of active components in the packet processing chain makes LARA++ a highly

extensible platform, the dynamic composition framework proposed by the architecture

CHAPTER 7. EVALUATION 156

provides a very flexible means for that. The fact that LARA++ introduces the con-

cept of safe processing environments for active code eliminates the need for a specific or

constraint programming language and thus enables “Turing complete” programmability.

Furthermore, the LARA++ programming interface does not impose any restrictions on

programmability. As node security is entirely controlled through policing, the LARA++

system API could expose the full low-level system interface to the active components

without weakening the security on the node. Finally, LARA++ also provides a means

to extend the programming environment on the active nodes by allowing users to create

and download support libraries in the form of passive components.

The aim of requirement L.2 is to achieve router performance close to the line speeds

of typical edge networks. Since performance of a LARA++ active router is obviously

highly dependent on the implementation of the architecture, this requirement is hard

to evaluate universally. Later in this chapter (in section 7.4.5), a performance estimate

of our prototype implementation shows that LARA++ certainly has the potential to

fulfil this requirement. From the architectural point of view, there is certainly a trade-

off between modularity and performance. Since LARA++ tries to maximise flexibility

through the concept of (de-)composition of active services, it trades off performance.

For example, data packets traversing a node must be passed to all the components that

indicate interest in the packet. However, LARA++ can also be programmed in ways

that trade modularity for performance. Active service developers can balance between

the comprehensive filter-based composition model provided for active components and

the lightweight plugin-like approach used for passive components. Furthermore, the

LARA++ architecture has been carefully designed to maximise performance where pos-

sible. Because of this, the idea of application level active networking has been rejected,

and a true network level approach has been employed instead. For the same reason,

LARA++ enables the safe execution of efficient binary code rather than having to rely

on code interpretation. Also, the LARA++ safety and security architecture has been

optimised by moving expensive security tests (for example, public key authentication) to

the initialisation and start-up routines, whereas very lightweight mechanisms are used

at run-time. For example, the active component identifier (ACID), which is assigned

at start-up time after proper authentication of the component, in conjunction with the

active component data structure (ACDS) allows very fast lookups of security policies at

run-time (see also section 5.8.1).

Highly dynamic programmability (L.3) is accomplished through the filter-based com-

position model proposed by LARA++. Since active programmability is merely a matter

of inserting (or removing) active components into (from) the packet processing chain on

the node, which is essentially done through loading (or unloading) component code into

the PEs and inserting (or removing) packet filter(s) into the classification graph, it is a

CHAPTER 7. EVALUATION 157

highly dynamic process that can be efficiently carried out at run-time without the need

for restarting or even reconfiguring the system. For example, it will be shown that load-

ing and instantiation of LARA++ components can be less than a millisecond assuming

the code is already stored and cached on the node or less than fifty milliseconds if the

component is loaded the first time from permanent storage (without the caching effect).

Note that when active components are initially (up)loaded onto a LARA++ node, addi-

tional checks regarding the code’s integrity (i.e., verification of the code signature) and

the authorisation of the loading operation are required.

Requirement L.4, which demands easy usability, must be considered from the point of

view of the end-users and developers. A key architectural decision that benefits end-user

usability is that LARA++ enables transparent service enhancements and customisation

– without the need to modify the end-user applications or systems. LARA++ pro-

grammability can simply be carried out by means of additional software or software

extensions for existing programs. Since this approach of network programmability can

be totally transparent, the correspondent nodes or applications of a user will not re-

quire any changes to the protocol stacks or applications. As the LARA++ framework

completely separates ‘active router programmability’ from ‘component development’5, it

tries to maximise usability for both tasks. While the former is essentially done through

the provision of a simple configuration file that specifies the actual component code, po-

tential loading properties (i.e., the provider), run-time configurations, etc. and a down-

load/distribution mechanism for the configuration file, the latter involves the develop-

ment of the component software. Even though the programming of a LARA++ router

by end-users is simply a matter of adapting the configuration file, it is expected that

support tools and/or application extensions will assist the users in this process. Us-

ability from the developers’ point of view, by contrast, is very much dependent on the

actual implementation of the LARA++ architecture and the support tools provided for

component developers. In the case of our particular implementation of LARA++, the

development task is greatly facilitated by the design decision to execute active code

within the user space processing environments, which allows convenient development of

user-space code. This in conjunction with the fact that the LARA++ architecture is

conceptually language independent prevents developers from having to learn specialised

programming languages and development tools (i.e., compilers, debuggers).

Safety for active code execution (L.5) within LARA++ is achieved through soft-

ware fault isolation. Specialised processing environments are used to protect the active

NodeOS and other active components from malicious or erroneous active code (see also

section 5.5.2). These processing environments form the management units for system-
5In fact, the LARA++ framework encourages third party development of active and passive compo-

nents, and establishes a business role for component service providers.

CHAPTER 7. EVALUATION 158

level resource control (A.5). They prevent LARA++ components from using memory

allocated to other processing environments or locking up a node through consumption of

all processing resources. More fine-grained resource control is achieved by means of the

system call control and policing component. They allow LARA++ to control access to

all resources including logical resources, such as routing tables and other system configu-

rations. In our particular implementation of the LARA++ architecture, high reliability

and performance for the safe processing environments is achieved through the use of

hardware supported system-level protection mechanisms, namely the virtual memory

manager and the processor task scheduler.

Secure programmability (L.6) of active routers for end users is commonly controlled

by means of user authentication (i.e., only authorised users can program a node) or code

signing techniques (i.e., only code with a valid signature is accepted). The LARA++

architecture combines both approaches to enable the specification of flexible policies (for

example, network administrators are allowed to install unsigned code, whereas user X

can only install code signed by Y). The fact that LARA++ supports safe active code

execution (L.5) – even for potentially un-trusted code6 – enables active programming for

unknown users and/or code. This is especially valuable for scenarios with a large user

base where authentication of individual users is hard to manage, as limited programma-

bility can be granted despite the lack of authentication.

While support for safe programmability in addition to the security measures (i.e.,

user authentication and code signing techniques) benefits scalability of the architecture

(as no per-user state is necessarily required for all users), scalable manageability (L.7) is

also favoured through a policy notation that supports aggregation (whilst retaining the

flexibility of fine-grain policing). Policy aggregation through grouping of policies of a

domain (i.e., users, code producers, etc.) largely reduces the number of policies required

to express the rules for common domain members. This is particularly important as

scalable manageability within active networks is mainly concerned with the management

of security policies for potentially very large domains of users and active code. The

provision of default policies (for unknown users or unsigned code) enables manageability

even for extremely large domains.

Interoperability (B.1) among active network architectures and applications has been

recognised as a long-term requirement for active networks that becomes important as

active router solutions are more widely deployed. Today, the only wide-spread deploy-

ment of various active network technologies takes place within the ABone [BR99] virtual

active network. The ANEP protocol used for active packet encapsulation in the ABone

provides the basis for interoperability. Unfortunately, this explicit de-multiplexing ap-
6Note that the LARA++ processing environments fully protect the active NodeOS and other pro-

cessing environment (even from malicious active code).

CHAPTER 7. EVALUATION 159

proach is very inflexible (see section 2.4.1) and demands explicit alteration of the data

streams (i.e., encapsulation). Since this restricts the evolution of execution environments

(support for versioning is lacking) and limits service composition (only one execution en-

vironment can be targeted), it conflicts with the LARA++ requirements L.1 and L.4.

Nevertheless, despite the fact that the LARA++ architecture does not promote ANEP

for those reasons, it could certainly be used to provide ANEP functionality. The filter-

based interaction with the data path obviously enables de-multiplexing of active packets

based on the ANEP identifier. The individual ABone execution environments would

simply have to be ported to LARA++ active components. Furthermore, the ability

to transparently integrate active network functionality and services into existing net-

works enables LARA++ to co-exist and complement other active network systems –

even without formal interoperability through ANEP.

The component-based approach to active networks proposed by LARA++ lays the

foundation for a new business model (B.4). It divides the market segment of current

router vendors into those of active router vendors (selling the programmable node hard-

ware and ActiveOS), active component developers (selling the active component soft-

ware), and active component providers (selling the service of providing the active com-

ponents). The component model proposed by the LARA++ architecture promotes the

fast evolution of active network software. The fact that LARA++ components are

modular and can be transparently integrated into the data path minimises the need

for standardisation and facilitates dynamic software upgrades (i.e., new versions of a

component can simply be loaded and instantiated on the routers). The short design-

development-deployment cycle of LARA++ components provides quick feedback on the

performance of a component, which accelerates the evolution of the software and reduces

the time-to-market. Also, as LARA++ components do not necessarily rely on standard-

isation or ‘formal’ cooperation with others, they can be quickly developed by a small

number of people at low cost. In conclusion, LARA++ promotes a free market approach

to the traditionally closed market segment of network software, as individual software

components compete in economic terms on the free marketplace (which is also accessible

to small companies) rather than politically in standardisation committees (where small

companies have less impact). Although network vendors will most certainly defend their

current market dominance as long as possible, transformation will become inevitable

as soon as the first active and programmable routers become established and the mar-

ket starts to open up. Businesses will soon stop investing in proprietary solutions that

exclude them from the benefits of the free market.

QoS support (B.5) within active networks is another less stringent requirement at

this stage as long there are not yet wide-scale deployments. The evolution of the Inter-

net, for example, shows that QoS support was not an issue for a long time and has just

CHAPTER 7. EVALUATION 160

recently started to be deployed in real environments. However, since network vendors

and service providers have now started to support and roll out QoS within the networks,

a solution to provide an equivalent level of service through active network nodes will be

required. Unfortunately, the problem of providing QoS in the context of active networks

is exacerbated, as active computation potentially within several active routers along the

transmission path must be considered in addition to the QoS properties of conventional

data networks. Although QoS support within the LARA++ architecture has not yet

been fully defined, an early study [SS00] has been carried out to investigate the pecu-

liarities of QoS support within active routers in general and in particular the LARA++

architecture. The paper identifies the need for node internal service classes and reser-

vation mechanisms that are at least as “strong” as those of external QoS mechanisms

(i.e., DiffServ [BBC+98] and IntServ [BCS94]). In order to simplify the mapping be-

tween external and internal QoS classes, the work proposes scheduling mechanisms for

node-local network and processing resources that are semantically equivalent to those

used along the end-to-end communication path. A skeleton for the implementation of

such a system for the LARA++ active node architecture has been provided as part of

this study.

7.4 Quantitative Evaluation

This section presents the experimental results of the LARA++ prototype implemen-

tation. Sections 7.4.1 to 7.4.4 evaluate the performance of individual components and

mechanisms, namely the active component scheduler, the packet channels, the packet

classification, and the component loading. Finally, section 7.4.5 tries to add up these

results to estimate the overall performance of the prototype implementation.

The performance results presented throughout this section are based on the proto-

type implementation for Windows 2000 simply because this implementation was further

advanced than the Linux implementation at the time of experimentation. Similar re-

sults are expected from the Linux based prototype due to the high resemblance in the

implementation approaches.

The hardware architecture of the prototype LARA++ router is based on a standard

PC consisting of a single Athlon XP 1600+ processor running at a clock speed of 1.4 GHz,

256 MB of RAM and three 100 Mbps Fast Ethernet interfaces (unless stated otherwise).

When considering this evaluation, it should be kept in mind that the results are

based on the initial prototype implementation without any special hardware support. It

is expected that the performance could be substantially improved when developed as a

commercial product.

CHAPTER 7. EVALUATION 161

7.4.1 Active Component Scheduler

This section evaluates the performance gain resulting from the LARA++ active thread

scheduler based on the prototype LARA++ implementation for Windows 2000 (see also

section 6.5.3). The aim of the active component scheduler is to reduce the scheduling

times for active threads by providing a specialised user-level thread scheduler as part of

the processing environments. Low scheduling overhead for active component processing

is considered especially important, as the LARA++ processing model assumes that ac-

tive services or enhanced network functionality are decomposed into (many) lightweight

active components. The reduction of scheduling overhead benefits the execution of

trusted active components within a single processing environment.

The measurements presented below compare the performance of the LARA++ active

thread scheduler with the standard Windows 2000 system thread scheduler. Figure

7.3 shows the performance gain resulting from the lightweight active thread scheduler.

These results indicate that the LARA++ scheduler performs context switches between

active threads approximately one order of magnitude faster than Windows 2000 switches

between normal user threads. Even context switches among kernel-level threads are

about 5-6 times more expensive.

Figure 7.3: A comparison of context switch times for different threading approaches:
While Win2K user-level threads take about 10.5 µs (avg) to schedule a thread out and
in (inclusive of housekeeping), kernel-level threads require half the time, approximately
5-6 µs (avg). LARA++ active threads, by contrast, require only in the order of 1 µs
(avg).

The measurements are based on simple test programs (i.e., a standard Windows

2000 application, a Windows 2000 kernel-level driver and a LARA++ processing envi-

ronment) that measure the times between activation of two competing threads of the

same kind (i.e., user-level system threads, kernel-level system threads and active threads

respectively).

CHAPTER 7. EVALUATION 162

The results of this experiment indicate that the performance of the LARA++ com-

ponent architecture, which strives to decompose large active applications into several

lightweight active components (each running in a separate active thread), remains ad-

equate in case of an efficient implementation of the scheduling mechanism. The fact

that context switches among active threads can be approximately one order of magni-

tude faster than among ordinary threads shows that increasing the number of software

components of a similar order should not decrease the performance much.

It should be noted that this experiment was carried out on the initial hardware

platform used for LARA++ development and testing – a standard Intel Pentium II

233 MHz PC equipped with 128 MB of RAM. However, since the focus of this experiment

lies on the relative performance gain of the LARA++ component scheduler, rather than

absolute performance results, repeating the experiment on the current hardware platform

is unnecessary.

7.4.2 Packet Channels

This section evaluates the performance of the LARA++ packet channel implementation

under Windows 2000. The packet channels, providing the data transfer mechanism be-

tween the classifier and active components (see section 6.3.3), play a central role within

the LARA++ architecture. Since all packets that require some form of active processing

need to be transferred between the classifier and the active component(s), the perfor-

mance of the packet channels is critical. The fact that LARA++ executes the active

components within the safe processing environment in user-space aggravates the prob-

lem as the packet channels must pass the data between different memory protection

domains. However, since the processing environments exploit virtual memory mecha-

nisms to provide safety, LARA++ is able to circumvent expensive copy operation for

passing data between the different protection domains by applying a virtual memory

mapping technique (see section 6.3.3 for further details).

To evaluate the performance of the packet channels, the following measures are con-

sidered: processing load and latency. While the former measures the load increase on

the node as a result of the channel processing, the latter captures the average channel

processing latency for packets passing the node. The measurements try to quantify the

processing time and load required to (1) pass a packet “up” to an active component, (2)

perform the minimum amount of housekeeping required to receive and send packets7,

and (3) transfer the data back “down” again.

The first set of experiments estimate the performance penalty arising from the mem-
7This includes the time an active component requires to receive and send the data; it involves copying

a packet descriptor from the input channel to the output channel. It also accounts for the average waiting

time for the active thread to be activated.

CHAPTER 7. EVALUATION 163

ory mapping mechanism. For this, we compare the processing load on a Windows 2000

based router in two cases: (a) without LARA++ support whereby packets are simply

forwarded by the default routing mechanism (Figure 7.4), and (b) with LARA++ sup-

port (Figure 7.5). In the latter case, the active NodeOS intercepts all data packets8 and

passes them to the test component (i.e., the packet memory is mapped into the address

space of the corresponding PE). The test component performs only the minimum house

keeping operations to process a packet before it passes the packets back down to the

NodeOS, which then un-maps the virtual memory and finally forwards the packet as in

the first experiment.

Figure 7.4: The processing load on a standard Win2K router while forwarding packets
under various network loads.

A comparison of Figures 7.4 and 7.5 shows that mapping network traffic demanding

active computation into user-space approximately doubles the processing load on the

router compared to default forwarding. The fact that LARA++ enables full data path

processing in user-space for approximately the same cost as the router takes for stan-

dard packet forwarding shows that the packets channel implementation is very efficient.

However, it also shows the limitations of the current prototype. Assuming 50% of the

processing resources would be reserved for the active computations on an active node,

only the remaining 50% would be available for the packet handling by the LARA++

component framework. Extrapolating the graphs in Figure 7.5 to about 50% of the total

processing load shows that a single processor active node of such power (i.e., Athlon XP

1600+) could only cope with approximately 150 Mbps (or 12500 packets per second9).

For the current prototype implementation this would imply that on average only ap-

proximately 1.5 active components could be processed for every packet if line speed of

typical edge networks (of the order of 100 Mbps) is required.
8Note that the classifier is completely circumvented in this experiment in order to estimate the

processing load of the packet channel processing, not the packet classification.
9Assuming a packet size of 1500 bytes.

CHAPTER 7. EVALUATION 164

Nevertheless, considering that the current implementation is merely a research im-

plementation without any performance optimisations or special hardware support (for

example, the LARA hardware architecture Cerberus), the results seem to be reasonable

as a solution for edge networks (see section 7.4.5 for further discussion).

Routing Load w/ LARA++ Processing [%]

0

10

20

30

Processing Load of PE Process Total Processing Load User Space Processing Load

10Mbps 20Mbps 30Mbps 40Mbps 50Mbps 60Mbps 70Mbps

Figure 7.5: The processing load on a Win2K LARA++ router that passes all data to
a user-space processing environment for active processing before it forwards the packets
as in the first experiment (see Figure 7.4).

The second experiment tries to capture the latency introduced by the packet channel

mechanism. Since this latency correlates with the overall processing load on the node,

the experiment will estimate the average latency under various loads.

The latency is measured by adding a timestamp to the internal packet data structure

when the packet is queued in the input channel of an active component. Upon comple-

tion, or when the active NodeOS continues to process the packet, a second timestamp is

taken. The latency is simply computed as the time difference between these timestamps.

Figure 7.6 presents the results under various processing loads.

Figure 7.6: Average Latency caused by Packet Channel Processing (under increasing
loads)

CHAPTER 7. EVALUATION 165

The figure shows the per-packet processing time averaged over 1000 packets. While

the average latency increases from 15 µs to 17 µs, the upper bound is consistently just

under 25 µs.

A closer analysis of the time distribution is provided in table 7.2. This shows that the

processing times are not much affected by the throughput. Even under high load (i.e.,

80 Mbps throughput), more than 95% of the packets are processed in less than 25 µs,

and the number of packets exceeding 225 µs increases only by approximately 0.2%.

Throughput
Average
Processing
Time [µs]

< 25 25-49 50-74 75-99 100-149 150-224 > 225

10 Mbps 15.13 987.23 5.23 0.73 0.59 1.32 4.39 0.50
20 Mbps 15.43 983.82 8.07 0.59 0.15 0.29 5.56 1.52
30 Mbps 15.83 975.53 15.66 1.04 0.18 0.32 6.14 1.13
40 Mbps 15.95 972.09 18.81 1.01 0.29 0.54 5.53 1.73
50 Mbps 16.03 971.61 19.88 1.46 0.30 0.61 4.14 2.00
60 Mbps 16.08 968.53 22.06 1.18 0.55 0.64 4.91 2.13
70 Mbps 16.44 962.90 27.25 1.30 0.50 0.28 5.71 2.06
80 Mbps 17.04 954.11 27.63 5.61 3.50 2.80 3.90 2.44

Table 7.2: Distribution of Packet Channel Processing Times (averaged over chunks of

1000 packets)

The fact that standard edge routers introduce delays of the order of 1 ms for normal

packet forwarding indicates that the delays introduced by the LARA++ packet channels

are reasonable. Even if a packet is processed by up to 20 active components, the pro-

cessing cost of passing the packet up into user-space for active processing and back down

again for re-classification (inclusive minimal housekeeping) for each active component

delays the packet less than 1/2 ms on average.

7.4.3 Packet Classification

This section evaluates the performance of the LARA++ packet classifier. As the classifier

is the central component of the service composition process, its performance is critical for

the overall system performance. The classification performance is especially important,

as it is the means to determine which active components must process a packet, and

therefore all packets passing through a node must be classified (as opposed to only those

that require active processing).

In order to estimate the processing cost of the classifier, an experiment has been

set up to measure the average classification times of packets as they pass through the

CHAPTER 7. EVALUATION 166

classification graph. To get the net cost of the classification process (without any channel

processing or active computation involved), the classifier filters the packets as normal,

but circumvents the processing.

The experiment encompasses three different scenarios. Each of the scenarios op-

erated over the same populated classification graph, albeit with different processing

characteristics for each one. Scenario one involved a type of packet chosen so that the

traffic passes through 5 classification nodes in the classification graph. The packets are

checked against 10 general filters and 500 flow filters. The second scenario used a packet

content that causes the traffic to pass through 10 classification nodes in the classification

graph. The number of general filters was doubled in order to impose roughly the same

processing load per node (as in test one), whereas the number of flow filters on the path

was kept constant at 500. By comparing the throughput of the first and second tests,

we expected to find the processing load to be proportional to the number of classifica-

tion nodes through which the packet travelled. The third scenario involved the same

packet format and number of general filters on the packet path as the second test, but

the number of flow filters on the classification path was doubled. The objective of this

experiment was to confirm that adding extra flow filters does not proportionally decrease

performance, all other things remaining equal.

Figure 7.7 presents the average results of these three experiments calculated as an

average over 5 million packets. As expected, the throughput roughly halved between

scenario one and two because the number of classification nodes on the packet path

doubled. The results show that the graph filters and general filters do not scale well.

Fortunately, their numbers are not related to the number of users of the active router,

and hence do not have to scale to large quantities. By increasing the number of users of

an active router, mainly the number of flow filters will increase proportionally. Between

scenarios two and three, the number of flow filters doubled, but performance was virtually

unaffected. With an average drop in throughput of less than 1% between these scenarios,

we have shown that the use of flow filters allows the classification model to scale well as

the number of users rises.

Further experiments were performed with the aim of measuring the average and the

maximum latency of a packet travelling through the classifier. Figure 7.8 illustrates a

breakdown of the time taken to perform different stages of classification over an average

of 5 million packets. Six states of processing have been selected to represent the complete

passage of a packet through the classifier, and the figure shows how these states account

for the total latency of a packet.

The sum of the processing time in each of the stages is equal to the total latency

imposed on a per-packet basis by the classifier. The total latency imposed by the classifier

on an individual packet is 9.4 µs on average. The maximum latency measured over the

CHAPTER 7. EVALUATION 167

Figure 7.7: Classification Throughput (for pre-defined packet paths)

5 million packets was 273 µs. Since the average values measured during this experiment

are almost identical with the minimum latency, it can be assumed that high processing

latencies of the order of the maximum latency must be rare.

Unfortunately, the fine-grained timing mechanism we employed had the effect that

it reduced the throughput of the classifier by approximately 35%. Therefore, we believe

that it would be a fair assumption that the true latency figures would be a proportionate

fraction of those presented in Figure 7.8 (i.e., approximately 6 µs for the average latency

of a packet and about 180 µs as an upper bound).

Of the total latency, more than half is accounted for by the complexity of the classifi-

cation graph. The complexity of the path through the classification graph undoubtedly

has a direct impact upon the latency. Thus, the main determinant of the packet latency

is the complexity of the packet itself. The majority of packets have only a MAC header,

a network header, a transport header and a payload but rarely have many options. They

would therefore take a “shortcut” through the classification graph, avoiding the extra

classification nodes required to process these optional headers.

The average latency of the classification stage processing flow filters is comparatively

small (∼ 800 ns) in the context of the total packet latency. The measurements described

above show that doubling the number of flow filters in the classification path reduces the

throughput by less than 1%. The impact of such a proportion added to the latency of

this classification stage would barely be noticeable. The classification latency of packets

is therefore largely unaffected by a change in the number of flow filters installed on an

active router.

The results show that the processing latency imposed by the classifier on an individual

packet is as little as ten microseconds (depending on the complexity of the classification

graph), which is a tiny fraction of the latency introduced by a normal edge router.

CHAPTER 7. EVALUATION 168

Figure 7.8: Classification Latency – Breakdown of the stages of packet classification,
measured in tenths of microseconds. The classification graph and the population of the
graph was chosen such that 500 flow filters, 10 graph filters and 12 general filters were
checked. Of these, 2 flow filter, 2 general filters and 4 graph filters were matched.

This shows that the inclusion of the LARA++ composition framework has a negligible

impact on the overall latency of the packets passing such a node. The results also

demonstrate that the introduction of the flow filters allows the composition model to

scale exceptionally well in terms of both the throughput of the active router and the

latency of packets being routed and does so without the number of users significantly

reducing the performance of the active node.

7.4.4 Component Loading

The quantitative evaluation of the component loader is impeded by the large variety

of loading procedures. Depending on the situation and the active application at hand,

different loading mechanisms are advantageous. Active code is either delivered in-band

with the data flow or fetched out-of-band upon receipt of a loading request for an ac-

tive component not yet loaded (cached) by the node. In the latter case, the active

node contacts the active component server specified by the component URI to fetch the

component code.

Active code that is loaded the first time must undergo a full security check. The code

signature is verified to make sure that only original (or unaltered) code from trusted pro-

ducers is accepted. Once the code is locally stored, the component must still be loaded

(i.e., instantiated and initialised) by a processing environment. For this, the component

loader checks the user’s and code producer’s authorisation, identifies a trusting process-

ing environment (if none exists, a new processing environment must be created), and

finally loads the component code into the processing environment and starts the active

processing.

In order to evaluate the active component loader, an experiment has been set up to

CHAPTER 7. EVALUATION 169

measure the instantiation times of active components. Figure 7.9 shows the experimental

results for varying component sizes based on our prototype LARA++ implementation.

The experiment shows the average loading times over 50 runs. The results indicate that

the loading times for LARA++ components increase only slightly with the code size.

For typical component sizes (i.e., 50-1000 KB), the average loading times seem to be in

the range 20-60 ms. The maximum value measured was of the order of 300 ms. This

exceptionally high value was taken under full system load while accessing the disk.

The experiment was difficult to carry out since the second loading of a component

(i.e., a cached component) resulted always in times less than a millisecond. Consequently,

the test machine had to be rebooted each time the experiment was carried out in order to

obtain representative results. Fortunately, this effect has a positive impact on LARA++

when deployed in a real-world scenario. It allows the instantiation of cached LARA++

components (for example, components that have been previously loaded) of the order of

a few milliseconds.

Figure 7.9: Average Component Loading Times

Although the experiment does not consider the times required for fetching component

code and verifying code integrity (i.e., code signature), this lower bound is still valuable,

as applications that demand very short loading times usually have the code stored or

cached on the active node. This is especially significant for applications that rely on very

fast instantiation of active components such as, for example, the fast handoff mechanism

described in section 7.3.1.3. In such cases, active code should be pre-loaded or cached

such that code authentication and integrity tests can be suppressed.

7.4.5 Discussion

This section concludes the quantitative evaluation of the LARA++ prototype imple-

mentation. Previous sections have shown the performance results of the individual

subsystems or mechanisms that constitute the LARA++ platform. For example, the

CHAPTER 7. EVALUATION 170

evaluation of the active thread scheduler (section 7.4.1) has shown that the cost of

scheduling among active components can be very low. This enables LARA++ routers

to cope with many concurrent active components, and hence supports the idea of a

component-based architecture.

Finally, this last section tries to combine these results for an overall system analysis.

In particular, it tries to estimate the overall processing cost (time and load) of the

LARA++ active node framework. In order to estimate the overall packet handling cost

for packets passing a LARA++ node, the following formula is used:

CTotal = CIntercept + CClassification(Pi) + N(Pi) × CChannelProcessing(Pi)

+
N(Pi)∑

n=1

(CScheduling + CActiveProcessing(n, Pi)) + CInject

(7.1)

The processing cost C can be either the processing time (T) or load (L). N(Pi)

expresses the number of active components to be processed for packet Pi.

The formula shows that the packet processing cost is vastly dependent on the packet

itself, i.e. the number of active components that are involved in the processing of the

packet and the nature of the active computations. Since the overall packet process-

ing cost depends largely on the active computations (CActiveProcessing), which cannot

be approximated as they in turn depend entirely on the actual active application (for

example, active component tasks could range from simple monitoring to heavyweight

data transcoding), only the “housekeeping” cost of the packet handling (see also section

7.4.2) is considered from now on. This simplification is feasible as the aim here is to

evaluate the LARA++ active component framework (i.e., the performance of the packet

processing path through a LARA++ router), rather than a particular active network

application.

Furthermore, since the aim here is primarily to provide an estimate of the overall

processing cost, the following additional simplifications of the cost function CTotal can

be proposed:

• The cost of intercepting (CIntercept) and re-injecting (CInject) packets is neglected10

as both are marginal compared to the overall processing cost of a packet.

• The classification cost CClassification(Pi) is approximated by an average cost value

10Note that both operations involve only a few simple instructions (i.e., pointer arithmetic) in order

to either intercept a packet from the network stack or to re-insert it back into the stack.

CHAPTER 7. EVALUATION 171

computed over a large set of packets in order to drop the packet dependency11:

C̄Classification ≈

j∑
i=1

CClassification(Pi)

j
; forj >> 1 (7.2)

• Likewise, the channel processing cost CChannelProcessing(Pi) is replaced by an esti-

mated average C̄ChannelProcessing for the same reason.

• The cost introduced by the component scheduler CScheduling is disregarded as it

has been found negligible compared to the active processing cost of a packet (see

section 7.4.1).

As a result, the remaining “housekeeping” cost of the LARA++ packet handling is

estimated as follows:

CTotalPacketHandling ≈ C̄Classification + N(Pi) × C̄ChannelProcessing (7.3)

Based on this cost estimation, the remainder of this section analyses the LARA++

system performance with respect to processing time and load. According to the ex-

periment described in section 7.4.3, the classification times (T̄Classification) seem to be

fairly small compared to typical packet processing times within routers. The results

have shown that even for a moderate classification graph with many packet filters, the

average classification times do not exceed the order of 10 µs. The average channel pro-

cessing time (T̄ChannlProcessing), by comparison, turns out to be approximately double

(see section 7.4.2).

The performance of the packet channels is of special interest as the channel processing

cost occurs once for every active component that is involved in the processing of a packet

(i.e., N(Pi) times). Moreover, the channel processing time is also dependent on the

system load. According to the results of section 7.4.2, the channel processing times

can vary substantially. The times have ranged from the order of 10 µs to over 225 µs.

Fortunately, the number of packets that have required more than 225 µs was as few as

0.2% under high load. Also, the overall channel processing times have shown to be fairly

stable with respect to the system load. For example, the average processing time rose

only by approximately 2 µs whilst increasing the throughput from 10 Mbps to 80 Mbps.

As a result of this, one can conclude that the packet processing time introduced by

the LARA++ component framework is primarily dependent on the number of active
11Note that although the classification cost depends heavily on the type (or rather content) of packets,

an average cost estimation is sufficient to determine the order of the overall packet processing cost, as

this has only a small impact on the total cost.

CHAPTER 7. EVALUATION 172

components being involved in the packet processing path.12 According to the measure-

ments in previous sections, the average processing times can range from as little as a

hundredth of a millisecond when no active components are involved (for classification

only), to over approximately a tenth of a millisecond (with a few active components

in the packet processing path) up to approximately half a millisecond (in the case of

many active components being processed). Table 7.3 illustrates the order of processing

latencies introduced by the current prototype implementation of LARA++. These es-

timates are computed according to formula 7.3 and the experimental results of section

7.4.2 and 7.4.3. A moderate classification graph and a medium load on the active router

is assumed.13

Number of
ACs (N(Pi))

Average
Latency

Upper Bound
(with a 95th percentile)

Classification only 0 ∼ 6 µs ∼ 8 µs

Few ACs 5 ∼ 86 µs ∼ 133 µs

Moderate # of ACs 10 ∼ 166 µs ∼ 258 µs

Many ACs 20 ∼ 326 µs ∼ 508 µs

Table 7.3: Approximate Processing Latencies introduced by LARA++

The processing load introduced by the LARA++ component framework is also

primarily a result of the packet classification (L̄Classification) and channel processing

(L̄PacketChannel). According to the results of section 7.4.3, the load of the classifier is

comparatively small for data rates in the order of line speed of typical edge networks

(i.e., 100 Mbps). Thus, the processing load is mainly determined by the packet channel

mechanisms. Fortunately, it is the computationally less expensive classification pro-

cedure that is involved in the processing of every packet passing through the router,

whereas the more heavyweight task of passing the packets to the active components is

only introduced when some form of active computation is required.

As a result, one can conclude that the processing load on the node is primarily

dependent on the number of packets being processed by active components and less

on the total number of packets streamed through the node. According to the cost

estimation (see formula 7.3) and the experimental results of section 7.4.2 and 7.4.3, the

current Windows 2000 prototype implementation of LARA++ can handle of the order
12Note again that the type of active computation and the time for the active processing are completely

omitted here in order to evaluate the LARA++ component framework independent from any particular

active application.
13According to the results of section 7.4.2 and 7.4.3, this implies an average for T̄Classification ≈ 6 µs

and T̄ChannelProcessing ≈ 16 µs, and an upper bound (with a 95th percentile) of approx. 8 µs for

TClassification and about 25 µs for TChannelProcessing .

CHAPTER 7. EVALUATION 173

of 250 Mbps if every packet is on average processed only once by a lightweight active

component.14 However, assuming that 50% of the processor resources might be reserved

for active computation, this would drop to about 125 Mbps. Table 7.4 estimates the

number of active components that can be processed for each packet passing the prototype

active router for different throughputs. It is assumed that 50% of the processor resources

are reserved for active computation.

Throughput Packets
(per second)

L̄Classification

(measured)

Remaining
Processor
Resources

L̄ChannelProcessing

(measured for one

AC per packet)

N̄(Pi)
(Average

of ACs)

250 Mbps ∼ 20800 ∼ 16% ∼ 34% ∼ 83% ∼ 0.4
125 Mbps ∼ 10400 ∼ 8% ∼ 42% ∼ 42% ∼ 1
100 Mbps ∼ 8400 ∼ 6.3% ∼ 43.7% ∼ 33% ∼ 1.3
75 Mbps ∼ 6250 ∼ 4.7% ∼ 45.3% ∼ 25% ∼ 1.8
50 Mbps ∼ 4200 ∼ 3.1% ∼ 46.9% ∼ 16.7% ∼ 2.8
20 Mbps ∼ 1670 ∼ 1.3% ∼ 48.7% ∼ 6.7% ∼ 7.3
10 Mbps ∼ 840 ∼ 0.6% ∼ 49.4% ∼ 3.3% ∼ 15

Table 7.4: Estimation of how many active components can process a packet on average

for different throughputs.

From these results, it can be concluded that without performance improvements (for

example, through hardware upgrades or a specialised hardware such as proposed by the

LARA Cerberus design), LARA++ is either restricted with respect to its performance

or the degree of modularity. Figure 7.10 illustrates this trade-off.

M
o

d
u
la

ri
ty

Performance

Figure 7.10: Trade-off between modularity and performance

As a result, LARA++ allows administrators to configure a node’s performance and
14Note that according to section 7.4.2 and 7.4.3, the packet channel mechanism uses approximately

80% of the processing resources to handle 250 Mbps, while the classifier takes somewhat less than the

remaining 20% to classify this amount of data per second.

CHAPTER 7. EVALUATION 174

modularity attributes flexibly along the trade-off graph. A description of two reasonable

configurations for LARA++ routers at either end of the scale between performance and

modularity follows:

Performance optimised (close to line-speed): This configuration assumes that the bulk

of the traffic is simply forwarded by the router, and active computation is applied

only to a fraction of the overall traffic (i.e., only to certain packets or data streams).

In order to achieve performance of the order of line-speed, the router must support

mainstream protocols such as IPv4 as standard network stacks, but may provide

experimental functionality such as Mobile IPv6 through active components.

Fully componentised (fraction of line-speed): A router configuration on the other end

of the spectrum provides all functionality (i.e., even mainstream protocols) in the

form of active components. While this approach facilitates flexible extensibility

(i.e., even extension to mainstream protocols is simply a matter of uploading active

components), the performance is significantly lower than line-speed.

As a final remark it is important to note that the trade-off here is not between

performance and flexibility (although flexibility and modularity are somehow related).

Flexibility within LARA++ is obtained by means of the filter-based composition solu-

tion which allows transparent enhancement of existing protocols and extension of node

functionality even without much degradation of the system performance. Performance

deficiency is only correlated to the amount of active processing that takes place.

7.5 Summary

This chapter has presented the evaluation of the LARA++ active router architecture and

its component-based prototype implementation. Section 7.2 started with a discussion on

the evaluation approach. A qualitative evaluation has been considered best suitable for

the design evaluation of the LARA++ architecture, whereas a quantitative evaluation

has been chosen to evaluate the particular implementation of LARA++ described in the

thesis.

The qualitative evaluation in section 7.3 has been split into two parts: the first part

(section 7.3.1) demonstrated based on a real case study to what extent the LARA++

active router architecture enables rapid implementation and dynamic roll-out of novel

network services. This theoretical evaluation has identified two typical problems of

wireless access networks, namely access control for public accessible networks and smooth

network handoffs between different wireless networks, and demonstrated how both of

these challenges can be resolved by means of LARA++ active routers.

CHAPTER 7. EVALUATION 175

The second part of the qualitative evaluation (section 7.3.2) has considered whether

or not the LARA++ architecture has fulfilled the functional requirements that have

been introduced in chapter 4. Apart from a few requirements, namely L.2 and B.5,

which have been partially satisfied so far, only requirement B.1, which demands support

for interoperability with other (traditional) active network approaches, could not be

satisfied. A justification was given as to why this requirement conflicts with other (more

important) requirements imposed on the LARA++ architecture (for example, flexible

extensibility and easy usability).

Finally, the evaluation of the LARA++ architecture was complemented by a quanti-

tative evaluation of the prototype implementation (section 7.4). This performance analy-

sis has examined the individual modules and mechanisms that constitute the LARA++

platform. The goal was particularly to measure the most important factors affecting

the node, namely the processing time (latency) and load introduced by the individual

components. Summarising the performance results, section 7.4.5 tried to estimate the

overall system performance by combining the results analytically. The results clearly

indicate a trade-off between performance and modularity. However, since LARA++ is

primarily designed for use in edge networks, where performance is typically a secondary

issue, resolution of this trade-off does not significantly compromise the flexibility and ex-

tensibility features of the component architecture. Furthermore, it has been shown that

LARA++ can be flexibly configured (on a per-service basis) towards either performance

or modularity. For example, service composition based on passive components makes

LARA++ very efficient in cases where tight coupling of components through explicit

bindings does not unnecessarily limit extensibility.

Chapter 8

Conclusion and Further Work

8.1 Overview

This final chapter recapitulates the work that has been carried out as part of this research

effort. It concludes the thesis by summarising the main contributions of the work and

drawing the conclusions that could be gained from the design and development of the

LARA++ active router architecture.

The first part of this chapter provides an overview of the thesis structure and a

summary of each chapter. This is followed by a synopsis of the main contributions. A

series of conclusions summarises what has been learnt from this work, and how these

experiences contribute to the wider field of research. Finally, a discussion is provided

on how this work is being taken further. This describes ongoing projects at Lancaster,

which use the LARA++ architecture and/or prototype implementation as an element

of their research.

8.2 Thesis Summary

Chapter one of this thesis set the scene by unfolding the evolution of data networks from

the early days of the Internet until today. It continued introducing the concepts of active

networking and describing the problems of today’s computer networks that have led to

the establishment of this new research area. It provided a discussion of the research

motivation for the field, highlighting the need for network-side processing capabilities

and the potential beneficiaries of such a technology. Finally, it presented a summary of

the research goals and challenges that are taken on by this work.

Chapter two examined the general background and issues of active and programmable

networks. It defined the basic methodology and introduced different architectural ap-

proaches towards network programmability, namely active packets and active extensions.

176

CHAPTER 8. CONCLUSION AND FURTHER WORK 177

A discussion on the impact of network-side data processing on the current network land-

scape followed. The chapter then continued with a discussion of various programming

models (for example, different code distribution and encoding mechanisms) and other

key aspects such as service composition and system integrity.

Chapter three provided a comprehensive overview of the current state-of-the-art in

the field of active networking. A large number of different projects were presented, de-

scribing their architectural approach, application domain, and the distinction of their

design. The variety of projects can be divided into three categories, namely active net-

work and node architectures, enabling technologies, and active applications and services.

In the first category, active network solutions following both the integrated and discrete

approach, were discussed. The majority of projects presented, however, pursue the

discrete approach – like the LARA++ architecture itself. This approach distinguishes

itself from the integrated approach in that active programs are downloaded out-of-band

or on-demand onto the active nodes (rather than inline with the actual data packets)

where they provide “persistent” services to a particular flow or a set of flows. Unlike the

integrated approach, whereby conventional packets are replaced by active packets that

contain both code and data, this approach is far more practical. For example, it does

not restrict programmability in terms of code size and latency that is required for code

authentication and execution on every intermediate node. Furthermore, end-to-end flows

are not required to be augmented with active code, which enables transparent network

programmability or extensibility of functionality. The second category compared related

operating systems support and further enabling technologies such as safety and security

mechanisms. Finally, the third category concluded this chapter with an overview of

recent work in the area of active network applications and services. This overview em-

phasised the potentials of active networks by presenting a range of novel mechanisms

and enhancements, which rely on programmability support inside the network.

Chapter four continued with a requirement analysis for active network systems in

general and for LARA++ in particular. The requirements are derived from a thorough

study of related work in the field of active networks and past experiences at Lancaster,

namely experiences gained during the development of the predecessor platform LARA

and the LANode active node architecture. General factors, for example the commercial

aspects such as the deployment of active technologies, are also taken into consideration.

A differentiation between the absolutely vital requirements and the more long-term re-

quirements for an active network architecture was made. From this multitude of general

requirements a subset of requirements, which were considered important for the design of

a flexibly extensible active edge node, was drawn. These specialised requirements form

the basis for the subsequent LARA++ active router architecture and implementation.

Chapters five and six presented the bulk of the contributions made in this thesis,

CHAPTER 8. CONCLUSION AND FURTHER WORK 178

namely the LARA++ active router architecture and the prototype implementations

of this architecture. Chapter five introduced the design of the LARA++ architecture

encompassing the motivation for this novel component-based approach to network pro-

grammability and a description of the fundamental building blocks. The chapter also

discussed the programming model that is pursued by LARA++ and its novel service

composition framework. The composition framework proposed in the thesis enables

network programmability through flexible extensibility of network functionality and ser-

vices. In other words, it allows LARA++ nodes to be augmented with new or enhanced

capabilities that are dynamically loadable onto the nodes (on demand), where they can

be flexibly and transparently integrated into the data processing chain on the network

device. Finally, chapter five provided an overview of the LARA++ safety and security

framework. While the former encompasses safety measures for the execution of active

code (for example, memory protection and processing resource scheduling), the latter

covers policing techniques that allow fine-grained configuration of node security policies

(potentially on a per-user basis).

Chapter six outlined how the LARA++ design has been being implemented in an

ongoing effort. Described in this section is the development of the core software com-

ponents of the LARA++ architecture. Due to the considerable extent of this architec-

ture, the development work has focused on validating the core design decisions and key

mechanisms (i.e., the packet classification, the safe processing environments, the policy

enforcement, etc.) through a ‘proof-of-concept’ implementation. The closing part of this

chapter described the development process (i.e., the debugging and testing) of LARA++

components, and presented a range of example components.

Chapter seven presented an evaluation of the proposed architecture and its proto-

type implementation. First, the evaluation took the form of a qualitative assessment.

Based on a concrete case study and several example applications, it evaluated the de-

sign choices that were made during the development of the architecture and discussed

to what extent they fulfil the requirements identified in chapter 4. The results were

largely positive, since all but one LARA++ specific requirements could be fully satis-

fied. Requirement L.2, which demands support for active processing speeds close to the

line speeds of typical edge networks, could only be partially satisfied, as it depends on

the type and amount of active computation that is carried out on the active router. The

second part of the evaluation assessed the prototype implementation of the LARA++

architecture in a quantitative manner. A performance analysis examined the individual

components and mechanisms that constitute the LARA++ platform. This was con-

cluded with an analytical study, which combined the individual performance results in

order to estimate the overall performance of the prototype active router. Again, the

results were affirmative.

CHAPTER 8. CONCLUSION AND FURTHER WORK 179

Chapter eight finally concludes the thesis by bringing together the thread of argu-

ments presented throughout this work. It highlights the contributions that have been

made to the field of active networking and presents the conclusions that can be drawn

from the design and development of the LARA++ active router architecture. Finally,

this thesis finishes with a discussion of further work in this area and in particular with

respect to LARA++. This encompasses ongoing research projects at Lancaster, which

use the LARA++ prototype and gain from the understanding acquired by this research,

confirming its value.

8.3 Contributions

This section summarises the main contributions and achievements of the research carried

out as part of this thesis.

The overall goal of this work, namely to design a novel active router architecture

that enables flexible extensibility of network functionality, has been successfully fulfilled

in the form of the LARA++ architecture. The validation of the architectural design

with respect to its feasibility and practicality has been accomplished through prototype

implementations of the LARA++ active node architecture.

8.3.1 Extension of Architectural Framework for Active Nodes

During the design phase of the LARA++ architecture, it became clear that there is a

strong need for the concept of a safe execution environment for active code in order

to provide the level of security and reliability that is expected from routers. As a

consequence, a specialisation of the conventional execution environment concept has been

suggested, which guarantees resource isolation1 (i.e., memory and processing resources)

for active code executed in different trust zones. These so-called processing environments

protect active computations running in different processing environments and the active

NodeOS from malicious or erroneous active code (see also section 5.5.2). This extra layer

of protection on top of the NodeOS extends the conventional architectural framework

for active router as suggested by a DARPA-funded working group.

8.3.2 Component-based Active Router Architecture

The main contribution of this work is the component-based architecture for active nodes,

whereby the distributed active programs are components themselves that allow flexible

extensibility of the functionality on the target node. This modular approach to active
1Resource isolation can be achieved through a range of techniques, such as virtual memory and task

scheduling mechanisms, safe code techniques, or a virtual machine.

CHAPTER 8. CONCLUSION AND FURTHER WORK 180

networking allows complex active services to be “broken up” into many small functional

components, which are reassembled on the active nodes by means of a service composi-

tion framework. The benefits of such a modular approach, namely flexibility of extensi-

bility, ease of reconfigurability, and reusability of components, have been demonstrated

throughout this work.

The remainder of this section highlights further advances and specialities of this

architecture:

• Generic Architecture

A fundamental goal of this work has been to design a truly generic active router

architecture. A highly flexible architecture, which is by no means tied to a specific

application or application domain, was envisioned. This has been accomplished

by checking the suitability of the architectural design for a wide-spectrum of ac-

tive network applications at several stages of the design phase. Furthermore, a

platform independent architecture was aimed for. This has also been successfully

demonstrated by means of the prototype implementations for both Windows 2000

and Linux, which are currently under way. An implementation for Windows CE

is also being considered.

• Flexible Programmability

LARA++ achieves maximum flexibility through support of full data path pro-

grammability. This enables the direct integration of new or enhanced functionality

into the data processing path of the active routers. The classification-based ser-

vice composition framework provides the management structures that allow users

to flexibly extend the router’s processing capabilities.

• Moderate Performance

Satisfactory performance of the active node is accomplished by carefully designing

the architecture in a way such that performance intensive operations are moved

to infrequently called routines which are only called when absolutely necessary.

For example, packet classification, which must be performed on every packet pass-

ing an active node, is directly processed in kernel-space (by the active NodeOS);

whereas the active computations, which are processed in the more heavy-weight,

but protected processing environments, only take place when there is a packet-filter

match.

8.3.3 Flexible Service Composition Framework

Extensibility was another key objective of the LARA++ architecture. As a result,

a mechanism that enables active nodes to flexibly incorporate new or enhanced func-

CHAPTER 8. CONCLUSION AND FURTHER WORK 181

tionality in the packet processing chain was desired. The classification-based service

composition framework provides such a mechanism. It allows programmers to define

where in the overall packet processing chain on an active router their components should

be incorporated. This mechanism has several advantages: first, it allows totally inde-

pendent users to co-operatively take part in the service composition process (without

having to know each other). The active components of the various users are simply

processed according to the structures provided by the classification graph. Second, it

enables dynamic (re)configuration of the service(s). Since composition is based on packet

filters, services can be dynamically (re)configured by inserting/removing packet filters

(i.e., adding/deleting active components). And third, it supports fine-grained service

composition on a per-packet basis. As the bindings of the components are based on

packet filters, they depend on the actual data of the packets passing through a node (for

example, network protocol, network addresses, and transport ports). The conditional

bindings define a service that may differ on a packet-by-packet basis.

8.3.4 Transparent Service Integration

The fact that active components are incorporated into the composition framework (i.e.,

the classifier) by means of packet filters makes service integration a transparent process.

This is especially advantageous as it enables the addition of active computation inside the

network in a totally transparent manner, i.e., there is no need to modify the data streams

or the end-to-end protocols (for example by adding a special active network tag/header).

Furthermore, since LARA++ is designed to provide standard routing/forwarding func-

tionality in addition to the active service framework, conventional edge routers should

be directly replaceable by a LARA++ node.

8.3.5 Policy-based Security Model

The LARA++ architecture also contributes a flexibly configurable security model for

active network nodes. The fact that LARA++ uses policies to define user and/or com-

ponent privileges allows active node administrators to flexibly configure the security level

on a per-user and/or per-component basis. A set of different policy types is supported

to tightly control the level of security; i.e., the installation of active components, the

insertion of packet filters into the classification graph, and run-time security. In par-

ticular the latter provides a means for fine-grained access control to the system API

and resources. Furthermore, support for grouping of individual entities with common

characteristics (for example, users, components, and system calls) is provided to simplify

the policy specification process through aggregation of common policies.

CHAPTER 8. CONCLUSION AND FURTHER WORK 182

8.3.6 Scalable Manageability to Support End-user Programmability

A key problem of supporting active programmability for arbitrary end-users is the prob-

lem of scaling the management of user credentials, which are required to authorise instal-

lation and execution of active code on the network nodes. The LARA++ architecture

circumvents this problem by enforcing strong safety measures during the execution of

active code, such that even code originating from arbitrary (or potentially malicious)

users could not harm the system. Thus, the safe processing environments in conjunction

with restrictive ‘default policies’ for unknown users (i.e., users for which no credentials

exist on the node) provide a scalable solution to this management problem.

8.3.7 Commercial Viability

The LARA++ active router architecture has been carefully designed for commercial

viability: first, the increasing demand for flexible service deployment capabilities in

the network creates a need for network devices that are open and programmable. As

demonstrated throughout this thesis, the LARA++ component-based router architec-

ture offers sufficient flexibility and extensibility to meet these requirements. It therefore

has the potential to become the design archetype for future commercial routers. Second,

the component-based programming model proposed by LARA++ strongly encourages

third-party software development and service provisioning. This helps to break up the

governing role of current router manufacturers into separate business roles, namely those

of network software developers and network software providers. The fact that compo-

nent developers and providers will then compete on the free market may lead to an even

faster evolution of network capabilities and services, and more cost-effective solutions.

8.3.8 Prototype Platform Implementation

Finally, a prototype implementation of the LARA++ architecture has been developed

in order to evaluate the novel design choices and mechanisms proposed (i.e., the ser-

vice composition framework, the safe processing environments, the policy-based security

model, etc.). Since it has not been feasible to implement the whole architecture, the

focus was laid on the implementation of the critical mechanisms for ‘proof-of-concept’

(i.e., the packet classifier, the packet channels, the system call control, etc.).

The fact that one of the core design aims of LARA++ was to design and prototype a

system that provides sufficient flexibility and extensibility makes it an ideal platform for

research into active networking as well as the wider field of computer networks. Its value

as a research platform is confirmed by a number of recent projects (further described in

the following section) that use LARA++ as their base network platform.

CHAPTER 8. CONCLUSION AND FURTHER WORK 183

8.4 Further Work

Besides the ongoing development efforts to complete the LARA++ prototype imple-

mentations, further work in this area focuses on using and extending the LARA++

architecture and prototype platform in order to build and experiment with novel active

network services.

The Mobile-IPv6 Testbed and the ProgNet project are two examples of ongoing

research that take advantage of the LARA++ architecture and platform.

8.4.1 Mobile-IPv6 Testbed

The Mobile-IPv6 Testbed [MSR01] is a commercially funded project for research into

next generation mobile network protocols, services and applications. The industrial

partners behind this new research facility are Cisco (as a network systems vendor),

Microsoft (as a software company), and Orange (as a wireless service provider). The

overall objectives of this collaboration between Lancaster University and these partners

are to draw academia and industry closer in order to exchange their expertise and to

develop next generation mobile network and service solutions.

The project strives to support research into many aspects of the general field of

mobile computing, including context and location aware ubiquitous services for mobile

users, enhanced support for mobile IPv6 networks (such as auto-configuration, ad-hoc

networking, handoff optimisation and adaptive applications), and issues arising from

QoS and network management in mobile environments.

A key activity of this collaborative project is to provision a real research environment

in the form of an operational Mobile IPv6 network that is available to real user com-

munities. The Testbed infrastructure, which is currently being set up, encompasses the

University campus and the city centre of Lancaster, and will potentially reach as far as

the edges of Lancashire and Cumbria through the CLEO network [For01a]. Remote net-

works at the partner sides will also be linked to the Testbed network. This environment

with its multitude of potential users will provide the keystone for the experimentation

and trialling of new services.

The use of active network technologies as proposed by LARA++ has many poten-

tial applications in diverse networks such as the Testbed infrastructure. One of the

areas where LARA++ will play a major role is security for the access networks. Since

large parts of the Testbed infrastructure will be accessible via wireless technologies (i.e.,

802.11, Bluetooth, and GPRS), access control is absolutely crucial. The LARA++ ac-

tive router platform is envisioned to replace the last hop router between the wireless

terminals and the core Testbed network. Flexible programmability and extensibility

at these edge nodes enable the deployment of network-side support for access control

CHAPTER 8. CONCLUSION AND FURTHER WORK 184

[SFW+01] and mobile handoff optimisations [SFSS00a]. Both these services are planned

to be implemented and deployed as part of this project. The fact that LARA++ enables

the dynamic roll-out of new network-side functionality and services greatly facilitates the

development and testing of such novel mechanisms.

Future plans also consider these LARA++ edge nodes to provide network-side QoS

and accounting support, whereby the real cost is computed from the network resources

that a user terminal consumes and from the delivered QoS. Finally, these edge nodes are

also envisioned to provide location tracking functionality in order to support high-level

context and location aware services.

8.4.2 ProgNet Project

The main aim of this project is to explore the benefits emerging from active and pro-

grammable network technologies when applied to mobile environments [PrN01]. One

of the key research questions, for example, is to what extent low-performance mobile

devices, which typically lack processing and bandwidth resources, can benefit from

off-loading computationally expensive and/or bandwidth demanding tasks onto pro-

grammable devices inside the network.

The intention is first to develop a framework of low-level mobile network services,

providing a platform for the development of generic mobile services and applications.

This will be followed by the creation of a set of high-level applications for mobile and no-

madic users in order to demonstrate the advantages of such a mobile services framework.

The framework is envisioned to provide:

• Mobile network memory and file-system services (that provide the same “view” to

the user at any access point on the network)

• Mobile code and remote execution environments (allowing small devices to off-load

heavy-weight processing tasks into the network, where sufficient processing power

and bandwidth resources are available)

• Support for mobile and transparent communication proxies residing inside the

network (that assist mobile devices during handoff and disconnected times)

The LARA++ active router architecture has been chosen as the base platform for

the development of this framework. LARA++ is expected to benefit greatly the devel-

opment of such a distributed network-side system for several reasons: (1) its dynamic

and transparent component-based programming model allows the deployment of new

services inside the network, when and where needed; (2) the flexibly extensible service

composition approach facilitates the introduction of new functionality anywhere in the

CHAPTER 8. CONCLUSION AND FURTHER WORK 185

forwarding path of a node; (3) support for full programmability of the data path ensures

sufficient flexibility to implement this framework; and finally (4) the concept of the pro-

cessing environments ensures appropriate safety and node reliability for end-user driven

network programmability.

The development work and experimentation with the mobile service framework car-

ried out as part of this project is expected to lead to the following outcomes: first, a

better understanding of the degree to which active and programmable network technolo-

gies can support mobile services and applications; and second, an answer to the question

whether the proposed mobile network environment, including its mobile service frame-

work and applications, can provide quantitative and qualitative advances for emerging

network systems such as next generation mobile networks.

8.5 Concluding Remarks

Although recent evolutions within the field of data networking indicate a clear need for

more flexibility and extensibility inside the network, it is not yet clear what form of

open and/or programmable network devices will prevail. Currently, research into active

and programmable networks is still for the most part an exercise for testing hypotheses

about various programming models and open interfaces.

This thesis has provided evidence that network programmability on edge devices,

where low to moderate performance is acceptable, is achievable in a cost-effective man-

ner based on a software router. High performance active processing, by contrast, de-

mands specialised hardware support as for example suggested by the predecessor plat-

form LARA (section 3.2.2.5). And even then, it will remain a challenge to achieve active

computations at lines speed of today’s core networks. The question whether or not it

will be feasible one day to perform line-speed active computation within the core of the

network remains open, as both the network speeds and the processor speeds are still

rapidly growing.

In terms of the original project goal, namely the design of a flexible and extensible

active router architecture, and the implementation of a prototype platform for further

network research, LARA++ has been a success. The fact that LARA++ already plays

a central role within several recent research projects at Lancaster, especially MSRL

[MSR01] and ProgNet [PrN01], underlines this achievement and the need for such a

flexible research platform. This also proves that the LARA++ architecture is sufficiently

generic for the different types of networking research undertaken by those projects.

Several conclusions about the development of active router architectures can be

drawn from this work:

CHAPTER 8. CONCLUSION AND FURTHER WORK 186

• A component-based active router architecture enables network programmability

through extensibility of router functionality and services. The service composition

framework determines the degree of extensibility (or in other words how flexibly

the active router can be programmed).

• A classification-based service composition approach enables transparent network

programmability. New or advanced network functionality can be flexibly inte-

grated into the packet processing chain on the router simply by inserting a packet

filters into the classification graph (the representation of the internal processing

path on the router). Such a filter-based approach also facilitates dynamic compo-

sition of services. Moreover, the fact that services can be transparently composed

(without having to know the interfaces of the neighbouring components) facilitates

co-operative service composition through independent users. A (dynamic) means

to extend the classification graph or in other words the composition model ensures

sufficient extensibility for future network protocols and services.

• Active network programmability demands sophisticated safety mechanisms to pro-

tect the nodes from malicious or erroneous active code and to provide the reliability

familiar in conventional network devices. The concept of the safe processing envi-

ronments proposed by the LARA++ architecture provides such a mechanism.

• The introduction of default policies for unknown users in conjunction with the

concept of flow-filters enables end-user programmability in a controlled and scalable

manner. Since these policies allow end-users only to program their own flows2,

no per-user state (i.e., authentication and authorisation information) has to be

managed on the active nodes.

From the LARA++ prototype implementations, one can conclude:

• Reuse of the standard ‘process technology’ of today’s operating systems as safe

execution environments for active code has proven to be very practical. The re-

quirements for system protection from typical user programs on end nodes and

active code in the case of active network nodes are similar.

• Implementation of a NodeOS that provides resource control and safety features

requires the NodeOS to be tightly coupled with the underlying (host) operating

system. For example, appropriate NodeOS support is required to control the sys-

tem interface and to pass the network data into the appropriate user-space memory.
2Note that the problem of connecting network users to their data flows is not trivial. An authentication

mechanism based on a token exchange between the active router and the end-terminal is considered.

CHAPTER 8. CONCLUSION AND FURTHER WORK 187

• Therefore, a split implementation across both kernel and user space of the under-

lying system appears to be a good choice. This approach takes advantage of the

highly optimised and sophisticated protection and safety mechanisms of today’s

operating systems.

• The virtual memory mapping mechanism developed for the LARA++ packet chan-

nel implementation has proven vital for active nodes that process active computa-

tions in user-space, when reasonable performance is required. Note that standard

user-space implementations for active networks typically suffer largely from the

performance hit resulting from the copy operations required to pass the network

traffic “up” into user-space and back “down” again.

In summary, this thesis has demonstrated that active networking provides the neces-

sary technology for vastly increasing the flexibility of current network systems. However,

the results of this work – like most other work in the field to this day – provide only a

piece of the overall mosaic. Further development will be required to bring together the

various research contributions. Current technologies will not only need to be improved,

but also combined to form complete systems in order to progress active networks from

individual laboratories into commercial use.

The extra level of complexity that is required to enable programmability inside the

network and the new potential security holes that result from this added flexibility has

made for a sceptical audience. Active networking still has a long way to go before a

definitive conclusion can be reached about its place in next generation communication

networks. Furthermore, before active networks can be widely deployed on a large scale,

such as the global Internet, more hurdles will have to be overcome: a standard will need

to be defined. The greatest challenge of active networking might be to overcome this

initial standardisation process that active networks themselves are supposed to circum-

vent when new functionality and services are introduced into the network. However, if

this challenge can be overcome, there seems no immediate reason why active networks

should not be the key technology for the future network infrastructure. In fact, ac-

tive networking, in addition to the broader field of programmable networks, has many

attractive features which make it suitable for adoption.

Appendix A

Common Packet Filter Properties

LARA++ packet filters a are defined by a set of properties. The following list describes

the common properties of both active component filters and graph filters:

Type: The type property indicates the type of the filter (for example, type: AC FILTER

or GRAPH FILTER).

Filter Pattern: The actual filters are expressed as lists of tuples of the form {frame

offset, bit pattern, bit mask}. In order to facilitate filter specification, semantics

on well-known packet structures and header fields can be used. For example, the

frame offset can be defined relative to well-known reference points and pre-defined

tags can be used to express fix values (i.e., offsets, patterns, etc.). The following

example illustrates the use of the filter pattern: {TP HEADER,TCP PROT ID,

TP MASK}. This defines a matching filter for all TCP packets.

Input Node: The input node defines at which point in the classification graph struc-

ture the filter should be insert. For example, a filter that wants to intercept all TCP

packets with a particular transport protocol port (for example, TCP port 80) could

define the filter pattern: {TP HEADER+TCP DSTPORT,80,PORT MASK}
and insert the filter at the input node: ‘tcp’.

Output Node: The output node defines the point in the classification graph where the

packet classifier should continue the classification process upon successful match-

ing this filter. This parameter is used in different ways for the distinct filter types.

While AC filters may use the output node to define the next point in the classifi-

cation process (for example, to define a cut-through path through the classification

graph), graph filters use this parameter to define a new branch in the classification

graph.

188

APPENDIX A. COMMON PACKET FILTER PROPERTIES 189

Active component filters require additional properties to indicate their association

with a particular AC instantiation and the relevant authentication information:

Active Component Reference: AC filters also include a reference to the active

component instance that “owns” the packet filter. The reference is required to

enable the classifier to deliver the packet to the appropriate component.

Operation: The operation property expresses the access permissions required by the

active component. Initially, only three operations are defined, namely ro, rw and

wo. The first operation indicates that the AC only wants to observe (read-only)

the filtered packets, whereas the second option is required when the AC wants to

modify (read-write) the packet data as well. Finally, the third operation is used,

when the AC does only want to send packets.

Principal: The principal indicates the network user who installs the filter and/or

the code producer providing the active component. The principal’s credentials in

conjunction with the operation properties permit the classifier to check whether

or not a filter confirms with the the node-local security policies and the privileges

associated with that principal.

Appendix B

Policy Specification

Policy specification within LARA++ is divided into three parts. Each part governs the

policies for one of the following protection realms: (1) instantiation of active compo-

nents, (2) installation of packet filters, and (3) run-time control of active components.

To optimise policy specification for these protection realms, LARA++ uses different no-

tations. The remainder of this section describes the various policy types and illustrates

how they are used.

B.1 Installation of Active Components

The LARA++ policies to safeguard the installation of active components have the fol-

lowing structure:

<users>[,<code producers>] (allow|deny) <components>

This rule allows node administrators to control active component installation based

on the identity of the network user trying to install the component and the code producer

of the component.

The following example illustrates how policies of this type can be used to safeguard

active nodes from malicious users:

system administrators allow all

authorised users,trusted producers allow untrusted components

steve.jobs,microsoft deny untrusted components

all,microsoft allow untrusted components

researchers,cisco allow all

The policy enforcement component applies these policies before a new component

(active or passive) is installed. It processes the policy rule base from top to bottom

190

APPENDIX B. POLICY SPECIFICATION 191

until any of the policies matches. Depending on the allow or deny, it either accepts or

rejects the component. If none of the rules match, the default behaviour is to reject the

component. As a consequence of this procedure, it is clear that the order of the policies

in the database matters. For example, if the third rule would appear after the forth

rule, the user Steve Jobs would not be precluded from installing untrusted Microsoft

components.

B.2 Installation of Packet Filter

Policy rules to control the installation of packet filters in the classification graph have

the following general form:

<users>[,<code producers>] <type> <operation> <input node>[,<output node>]

These policies also use the network user who installed the active component and

the code producer as criteria to whether or not the component is allowed to insert a

certain packet filter into the classification graph. The type defines the type of packet

filters (i.e., general or flow filter) addressed by this policy rule. The operation defines

whether access to data packets is prohibited [no], or whether data can be read [ro],

read and written [rw], or only written [wo]. The input node is required to define

where in the classification graph a packet filter can be installed. The optional output

node can be used to allow components to “shortcut” the classification graph (see section

5.6.3). It defines the node in the classification graph where the matched packets will

be reinserted after the respective component has completed the active processing. By

default packets are reinserted at the point in the classification where they have been

extracted to ensure that all components get the chance to process the packets.

The following example policies illustrate how this policy rule is used:

system administrators generic rw *

all,cisco generic rw /ipv6

lancaster researchers generic rw /ipv7,/netout

authorised users,trusted producers flow rw *

all,trusted producers flow ro *

Note, the * is used to indicate all nodes within the classification graph.

The example demonstrates the flexibility and the power of this policy type. It al-

lows node administrators to precisely define who can insert packet filters, what type

of filters and where in the classification graph they can be inserted. The second rule,

for example, allows components (produced by Cisco and installed by arbitrary users) to

APPENDIX B. POLICY SPECIFICATION 192

insert a generic packet filter with read/write permissions at the /ipv6 input node of the

classification graph. The third rule, by comparison, enables the user group lancaster

researchers to insert a packet filter for a hypothetical IPv7 protocol. This policy,

for example, allows the group to safely develop a new network protocol without inter-

fering with standard IPv4/v6 traffic. Note that the component inserting the generic

packet filter can directly re-insert the processed data packets at the /netout node in the

classification graph.

B.3 Run-time Security

Policy rules to control access to the system API and the node-local resources at run-time

have the following form:

(<users>[,<code producers>] | <components>) (allow|deny) <system calls>

(<users>[,<code producers>] | <components>) (grant|limit) <resource:value>

Similarly to the policy rules defined previously, run-time policies can also use the

network user and code producer as the basis to either allow or deny access to system

calls or resources. The component type (i.e., system or user) and the properties (i.e.,

trusted, privileged, authenticated, etc.) can be used alternatively.

The following example shows how these policy types can be used to control access

to the system API and resource usage:

all,trusted producers allow syscalls

privileged users allow disk syscalls

all deny disk syscalls

system components grant processing:high-priority

all limit processing:round-robin

user components limit bandwidth:100kbps

The first rule enables trusted components full access to the system API. The next

two rules restrict access to disk related system calls only to privileged users. Rule four

enables system components to request high-priority process scheduling, whereas all other

components are constrained to round-robin scheduling. Finally, the last rule limits all

user components to a maximum data rate of up to 100 Kbps.

References

[A+97] D.S. Alexander et al. Active Network Encapsulation Protocol (ANEP).
Internet draft, IETF, July 1997. Work in progress.

[AAA+99] D.S. Alexander, K.G. Anagnostakis, W.A. Arbaugh, A.D. Keromytis, and
J.M. Smith. The Price of Safety in an Active Network. In Proceedings of
ACM SIGCOMM, 1999.

[AAH+98] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore,
C. Gunder, S. Nettles, and J.M. Smith. The switchware active network
architecture. In Proceedings of IEEE Network, May/June 1998.

[AAKS98] D.S. Alexander, W.A. Arbaugh, A.D. Keromytis, and J.M. Smith. A secure
active network environment architecture: Realization in SwitchWare. IEEE
Network Special Issue on Active and Controllable Networks, 12(3):37–45,
May/June 1998.

[AMZ95] Elan Amir, Steve McCanne, and Hui Zhang. An application level video
gateway. Proceedings of ACM Multimedia ’95, San Francisco, CA, 1995.

[ANW98a] Active Networks Working Group. E. Zegura (Ed.). Composable Services for
Active Networks. Draft, September 1998.

[ANW98b] Active Networks Working Group. K.L. Calvert (Ed.). Architectural Frame-
work for Active Networks. Draft, August 1998.

[ANW99] Active Networks Working Group. L. Peterson (Ed.). NodeOS Interface
Specification. Draft, July 1999.

[ANW01] Active Networks Working Group. S. Murphy (Ed.). Secutiry Architecture
for Active Networks. Draft, November 2001.

[AR94] F.M. Avolio and M.J. Ranum. A network perimeter privacy, with secure ex-
ternal access. In Proceedings of the Internet Society Symposium on Network
and Distributed System Security, Glenwood, ML, February 1994.

[ART94] System Management ARTS. SMARTS, 1994.

[ASNS97] D.S. Alexander, M. Shaw, S. Nettles, and J.M. Smith. Active Bridging. In
Proceedings of ACM SIGCOMM, pages 101–111, 1997.

193

REFERENCES 194

[ATLLW96] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient and
language-independent mobile programs. In Proceedings of the ACM SIG-
PLAN ’96 Conference on Programming Language Design and Implementa-
tion (PLDI), pages 127–136, Philadelphia, PA, 1996.

[B+97] A. Banchs et al. Multicasting Multimedia Streams with Active Networks.
Technical report 97-050, ICSI, 1997.

[B+98] J. Biswas et al. The IEEE P.1520 Standards Initiative for Programmable
Network Interfaces. IEEE Communications, 36(10):64–70, 1998.

[B+01] B. Braden et al. Active Reservation Protocol (ARP) – Lessons Learned,
December 2001.

[Ban01] M. Banfield. Service creation combining programmable networks and open
signalling technologies. PhD thesis, Lancaster University, United Kingdom,
2001.

[BBC+98] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services. RFC 2475, IETF, December 1998.

[BCE+94] B.N. Bershad, C. Chambers, S.J. Eggers, C. Maeda, D. McNamee,
P. Pardyak, S. Savage, and E.G. Sirer. SPIN – An extensible microker-
nel for application-specific operating system services. In Proceedings of 4th
ACM SIGOPS European Workshop, pages 68–71, 1994.

[BCF+01] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, J. Kann, and
V. Shenoy. Introduction to the ASP Execution Environment (Release 1.5).
Technical report, USC – Information Science Institute, http://www.isi.-
edu/active-signal/ARP/DOCUMENTS/ASP EE.ps, November 2001.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
Architecture: an Overview. RFC 1633, IETF, June 1994.

[BCZ96] S. Bhattacharjee, K.L. Calvert, and E.W. Zegura. On Active Networking
and Congestion. Technical report git-cc-96/02, 1996.

[BCZ98] S. Bhattacharjee, K.L. Calvert, and E.W. Zegura. Self-organizing wide-area
network caches. In Proceedings of IEEE INFOCOM (2), pages 600–608, San
Francisco, CA, March 1998.

[Ber00] S. Berson. A Gentle Introduction to the ABone, October 2000.

[BFK98] M. Blaze, J. Feigenbaum, and A.D. Keromytis. Keynote: Trust manage-
ment for public-key infrastructures (position paper). In Proceedings of the
Security Protocols International Workshop, pages 59–63, Cambridge, U.K.,
1998.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In
Proceedings of the 17th Symposium on Security and Privacy. IEEE Com-
puter Society Press, pages 164–173, 1996.

REFERENCES 195

[BH99] G. Back and W. Hsieh. Drawing the Red Line in Java. In Proceedings of
the 7th IEEE Workshop on Hot Topics in Operating Systems, Rio Rico,
Arizona, March 1999.

[BLFIM98] T. Berners-Lee, R. Fielding, U.C. Irvine, and L Masinter. Uniform Resource
Identifiers (URI): Generic Syntax. RFC 2396, IETF, August 1998.

[Bor94] N. Borenstein. Email with a Mind of its Own: The Safe-Tcl Language for
enabled Mail. In Proceedings of IFIP International Conference, Barcelona,
Spain, 1994.

[BR99] B. Braden and L. Ricciulli. A Plan for a Scalable ABone – A modest
proposal. Technical report, USC – Information Science Institute, ftp://ftp.-
isi.edu/pub/braden/ActiveNets/ABone.whpaper.ps, January 1999.

[Bro81] L. Brodie. Sarting FORTH. Prentice Hall, 1981.

[BTS+98] G. Back, P. Tullmann, L. Stoller, W.C. Hsieh, and J. Lepreau. Java Operat-
ing Systems: Design and Implementation. Technical Report UUCS-98-015,
University of Utah, August 1998.

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSer-
Vation Protocol (RSVP)—Version 1 Functional Specification. RFC 2205,
IETF, September 1997.

[C+96] R. Caceres et al. Fast and Scalable Handoffs for Wireless Internetworks. In
Proceedings of ACM Mobicom, pages 56–66, 1996.

[C+98] P. Chandra et al. Darwin: Customizable resource management for value-
added network services. In Proceedings of Sixth IEEE International Con-
ference on Network Protocols (ICNP), Austin, TX, October 1998.

[C+00] A. Cambell et al. Cellular IP. Internet Draft draft-ietf-mobileip-cellularip-
00.txt, IETF, 2000. Work in progress.

[CAM] The Caml Language. Online reference, Institut National de Recherche en
Informatique et en Automatique, http://caml.inria.fr/.

[CDK+99] A. Campbell, H.G. De Meer, M.E. Kounavis, K. Miki, J. Vieente, and
D. Villela. The Genesis Kernel: A virtual network operating system for
spawning network architectures. In Proceedings of the 2nd Workshop on
Open Architectures and Network Programming (OpenArch), NewYork, NY,
March 1999.

[CDM+00] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Develop-
ing a context-aware electronic tourist guide: some issues and experiences.
In Proceedings of CHI, pages 17–24, Netherlands, April 2000.

[CFSS99] R. Cardoe, J. Finney, A.C. Scott, and W.D. Shepherd. LARA: A prototype
system for supporting high performance active networking. In Proceedings
of the First International Working Conference on Active Networks (IWAN),
volume LNCS 1653, pages 117–131, Berlin, Germany, 1999. Springer-Verlag.

REFERENCES 196

[CGK+00] A. Campbell, J. Gomez, S. Kim, A. Valko, C. Wan, and Z. Turanyi. Design,
implementation, and evaluation of Cellular IP. IEEE Personal Communi-
caitons, 7(4), August 2000.

[CHLL96] M. C. Chan, J.-F. Huard, A.A. Lazar, and K.-S. Lim. On realizing a
broadband kernel for multimedia networks. Lecture Notes in Computer
Science, 1185:56–64, 1996.

[COM] Information and Resources for the Component Object Model-based Tech-
nologies. Online reference, Microsoft Corporation, http://msdn.microsoft.-
com/com/.

[CVP99] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating segmentation
and paging protection for safe, efficient and transparent software exten-
sions. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP), pages 140–153, 1999.

[DAR98] DARPA Active Network Research Program. Active Networks CBD Refer-
ence (BAA #98-03), 1998.

[DCMF99] N. Davies, K. Cheverst, K. Mitchell, and A. Friday. Caches in the Air:
Disseminating Information in the Guide System. In Proceedings of IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA), New
Orleans, LU, February 1999.

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy
specification language. In Proceedings of Policy Worshop, pages 18–38,
Bristol, U.K., 2001.

[DDPP98] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plug-ins: A
software architecture for next generation routers. In Proceedings of ACM
SIGCOMM, pages 229–240, September 1998.

[DP98] D. Decasper and B. Plattner. DAN – Distributed Code Caching for Active
Networks. In Proceedings of IEEE INFOCOM (2), San Francisco, CA,
March 1998.

[DPP99] D. Decasper, G. Parulkar, and B. Plattner. A Scalable, High Performance
Active Network Node. IEEE Network, January 1999.

[Dro97] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, IETF, March
1997.

[dS98] S. da Silva. Netscript Tutorial (Version 0.10). Online reference, Columbia
University Department of Computer Science, October 1998.

[dSFY98] S. da Silva, D. Florissi, and Y. Yemini. Composing Active Services in
NetScript, March 1998.

[DVW92] W. Diffie, P.C. Van Oorschot, and M.J. Wiener. Autentication and Authen-
ticated Key Exchanges. In Designs, Codes, And Cryptography, 2(2):107–
125, 1992.

REFERENCES 197

[EF94] K. Egevang and P. Francis. The IP Network Address Translater (NAT).
RFC 1631, IETF, May 1994.

[EHK96] D.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘C: A language for high-level,
efficient, and machine-independent dynamic code generation. In Proceedings
of Symposium on Principles of Programming Languages (POPL), pages
131–144, 1996.

[FG99] M. Fry and A. Ghosh. Application Level Active Networking. Computer
Networks, 31(7):655–667, 1999.

[FKFH00] A. Fernando, B. Kummerfeld, A. Fekete, and M. Hitchens. A new dynamic
architecture for an active network. In Proceedings of the 3rd Workshop on
Open Architectures and Network Programming (OpenArch), Israel, 2000.

[FMS+98] D. Feldmeier, A. McAuley, J.M. Smith, D. Bakin, W. Marcus, and
T. Raleigh. Protocol Boosters. IEEE Journal on Selected Areas in Com-
munications (Special Issue on Protocol Architectures for 21st Century Ap-
plications, 16(3):437–444, April 1998.

[For01a] B. Forde. CLEO – Cumbria and Lancashire Education Online. Presenta-
tion at BECTa Wireless Networking for Education, Lancaster University,
http://www.becta.org.uk/technology/techseminars/250101/cleo.pdf, Jan-
uary 2001.

[For01b] Bluetooth Forum. Specification of the Bluetooth System – Core.
Specification volume 1, http://www.bluetooth.com/pdf/Bluetooth 11 -
Specifications Book.pdf, February 2001.

[FZ81] R. Forchheimer and J. Zander. Softnet – Packet Radio in Sweden. In
Proceedings of AMRAD Conference, 1981.

[G+00] B. Gleeson et al. A Framework for IP Based Virtual Private Networks.
RFC 2764, IETF, February 2000.

[GBB+01] D. Glynos, C. Boukouvalas, P. Bosdogianni, K. Ahola, A. Juhola, and P.A.
Aranda-Gutierrez. Mobile Active Mail. In Proceedings of the Third Inter-
national Working Conference on Active Networks (IWAN), volume LNCS
2207, Philadelphia, USA, September 2001. Springer-Verlag.

[GFC00] A. Ghosh, M. Fry, and J. Crowcroft. An Architecture for Application Layer
Routing. In Proceedings of the Second International Working Conference
on Active Networks (IWAN), volume LNCS 1942, pages 71–86. Springer-
Verlag, October 2000.

[Gho00] A. Ghosh. FunnelWeb v2.0.1. Online reference, http://dmir.socs.uts.edu.-
au/projects/alan/, 2000.

[GII01] GUIDE II: Services for Citizens. Research Project, EPSRC Grant
GR/M82394, Lancaster University, 2001.

[GM95] J. Gosling and H. McGilton. The Java Language Environment, 1995.

REFERENCES 198

[Gos95] J. Gosling. Java Intermediate Bytecodes. In Proceedings of SIGPLAN
Workshop on Intermediate Representations (IR95), San Francisco, CA,
1995.

[GR93] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley, 1993.

[GY98] G. Goldszmidt and Y. Yemini. Delegated Agents for Network Management.
IEEE Communications, 36(3):66–70, March 1998.

[HBB+99] J.J. Hartman, P.A. Bigot, P. Bridges, B. Montz, R. Piltz, O. Spatscheck,
T.A. Proebsting, L.L. Peterson, and A. Bavier. Joust: A Platform for
Liquid Software. IEEE Computer, 32(4):50–56, April 1999.

[HCC+98] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von Eicken.
Implementing Multiple Protection Domains in Java. In Proceedings of
USENIX Annual Technical Conference, pages 259–270, New Orleans, LA,
1998.

[Hj00] G. Hjlmtysson. The Pronto Platform - A flexible toolkit for programming
networks using a commodity operating system. In Proceedings of the 3rd
Workshop on Open Architectures and Network Programming (OpenArch),
Israel, 2000.

[HK99] M. Hicks and A. D. Keromytis. A Secure PLAN. In Proceedings of the First
International Working Conference on Active Networks (IWAN), volume
LNCS 1653, pages 307–314, Berlin, Germany, 1999. Springer-Verlag.

[HKM+98] M.W. Hicks, P. Kakkar, J.T. Moore, C.A. Gunter, and S. Nettles. PLAN:
A Packet Language for Active Networks. In Proceedings of Third ACM
SIGPLAN International Conference on Functional Programming, pages 86–
93, 1998.

[HL98] K. Hafner and M. Lyon. Where Wizards Stay Up Late: The Origins of the
Internet. Simon and Schuster, 1998.

[HMA+99] M.W. Hicks, J.T. Moore, D.S. Alexander, C.A. Gunter, and S. Nettles.
PLANet: An Active Internetwork. In Proceedings of IEEE INFOCOM (3),
pages 1124–1133, 1999.

[HMPP96] J.J. Hartman, U. Manber, L.L. Peterson, and T. Proebsting. Liquid Soft-
ware: A new Paradigm for Networked Systems. Technical Report 96-11,
Department of Computer Science, University of Arizona, June 1996.

[HN00] M.W. Hicks and S. Nettles. Active Networking means Evolution (or En-
hanced Extensibility required). In Proceedings of the Second International
Working Conference on Active Networks (IWAN), volume LNCS 1942,
pages 16–32. Springer-Verlag, October 2000.

[Hor00] L. Hornof. Self-specializing mobile code for adaptive network services. In
Proceedings of the Second International Working Conference on Active Net-
works (IWAN), volume LNCS 1942, pages 102–113. Springer-Verlag, Octo-
ber 2000.

REFERENCES 199

[IDD] NDIS Intermediate Drivers. Online reference, developer resources, msdn -
library, Microsoft Corporation, http://msdn.microsoft.com/library/.

[ISO84] ISO. Information Processing Systems: Open System Interconnection – Ba-
sic Reference Model. Technical report, ISO/IEC, 1984.

[JAV] Java 2 SDK, Standard Edition Documentation v1.3. Online reference, Sun
Microsystems, http://java.sun.com/j2se/1.3/docs/index.html.

[JGS93] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[JOU] Joust. Online reference, University of Arizona Computer Science Depart-
ment, http://www.cs.arizona.edu/scout/joust.html.

[KA98] S. Kent and R. Atkinson. Security Architecture for Internet Protocol. RFC
2401, IETF, November 1998.

[Kat97] D. Katz. IP Router Alert Option. RFC 2113, IETF, February 1997.

[LAN99] LAN MAN Standards Committee of the IEEE Computer Society. Wireless
LAN medium access control (MAC) and physical layer (PHY) specifica-
tions. IEEE standard 802.11, 1999.

[Lan01] LandMARC – Lancaster and Microsoft Active Research Collaboration. Re-
search Project funded by Microsoft Research (Cambridge), Lancaster Uni-
versity, http://www.landmarc.net/, 1999–2001.

[LG98] Ulana Legedza and John Guttag. Using network-level support to improve
cache routing. Computer Networks and ISDN Systems, 30(22–23):2193–
2201, 1998.

[LGT98] L.H. Lehman, S.J. Garland, and D.L. Tennenhouse. Active Reliable Mul-
ticast. In Proceedings of IEEE INFOCOM (2), pages 581–589, 1998.

[Lin00] B. Lindell. Active Signaling Protocol (ASP) Execution Environment, Oc-
tober 2000.

[LL94] M. Leone and P. Lee. Lightweight run-time code generation. In Proceed-
ings of SIGPLAN Conference on Partial Evaluation and Semantics-Based
Program Manipulation, pages 97–106, Orlande, FL, June 1994.

[LWG98] U. Legedza, D. Wetherall, and J. Guttag. Improving the performance of
distributed applications using active networks. In Proceedings of IEEE
INFOCOM (2), San Francisco, CA, April 1998.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley Publishing, 1996.

[Mar94] R.T. Marshall. The Simple Book: An Introduction to Internet Management.
Prentice Hall, 1994. 2nd Edition.

REFERENCES 200

[MBC+99] S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, K. Calvert, and E. Ze-
gura. Bowman and CANEs: Implementation of an Active Network. In
Proceedings of the 37th Allerton Conference on Communication, Control
and Computing, Monticello, IL, September 1999.

[MBZC00] S. Merugu, S. Bhattacharjee, E.W. Zegura, and K.L. Calvert. Bowman: A
Node OS for Active Networks. In Proceedings of IEEE INFOCOM, pages
1127–1136, 2000.

[MCH01] Laurent Mathy, Roberto Canonico, and David Hutchison. An Overlay
Tree Building Control Protocol. In Proceedings of the Third International
COST264 Workshop on Networked Group Communication (NGC 2001),
volume LNCS 2233, pages 78–87, London, UK, November 2001. Springer-
Verlag.

[MDCG99] G. Morrisett, D.Walker, K. Crary, and N. Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527–568, 1999.

[Men99] P. Menage. RCANE: A resource controlled framework for active network
services. In Proceedings of the First International Working Conference on
Active Networks (IWAN), volume LNCS 1653, pages 25–36, Berlin, Ger-
many, 1999. Springer-Verlag.

[MF01] G. MacLarty and M. Fry. Active Content Distribution Networks, September
2001.

[MHN01] J.T. Moore, M. Hicks, and S. Nettles. Practical Programmable Packets. In
Proceedings of IEEE INFOCOM, pages 41–50, April 2001.

[MHWZ99] B. Metzler, T. Harbaum, R. Wittmann, and M. Zitterbart. AMnet: Het-
erogeneous multicast services based on active networking. In Proceedings of
the 2nd Workshop on Open Architectures and Network Programming (Ope-
nArch), NewYork, NY, March 1999.

[MKJK99] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek. The Click modular
router. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP), pages 217–231, December 1999.

[MMO+94] A.B. Montz, D. Mosberger, S.W. O’Malley, L.L. Peterson, T.A. Proebsting,
and J.H. Hartman. Scout: A communications-oriented operating system.
In Operating Systems Design and Implementation, page 200, 1994.

[MRPH01] L. Mathy M. Rennhard, S. Rafaeli, B. Plattner, and D. Hutchison. An
Architecture for an Anonymity Network. In Proceedings of 10th IEEE Intl.
Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises (WET ICE), Boston, MA, June 2001.

[MS00] K. El Malki and H. Soliman. Hierarchical Mobile IPv6 and Fast Handoffs.
Internet Draft draft-elmalki-soliman-hmipv4v6-00.txt, IETF, 2000. Work
in progress.

REFERENCES 201

[MSR01] MSRL – Mobile-IPv6 Systems Research Lab. Research Project funded by
Cisco Systems, Microsoft Research (Cambridge), and Orange Ltd., Lan-
caster University, http://www.mobileipv6.net/, 2001.

[NDI] The Network Driver Interface Specification (NDIS) Interface. Online
reference, developer resources, msdn - library, Microsoft Corporation,
http://msdn.microsoft.com/library/.

[Nec97] G.C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119, Paris, France, 15–17 1997.

[Nec98] G.C. Necula. Compiling with Proofs. PhD thesis, 1998.

[Nel91] G. Nelson. Systems Programming with Modula-3. Prentice Hall, Englewood
Cliffs, NJ, 1991.

[NET] Netfilter. Online reference, http://www.netfilter.org/.

[NGK99] E. Nygren, S. Garland, and M.F. Kaashoek. PAN: A high-performance
active network nodei supportingi multiple mobile code systems. In Proceed-
ings of the 2nd Workshop on Open Architectures and Network Programming
(OpenArch), pages 78–89, NewYork, NY, March 1999.

[NK98] S. Nilsson and G. Karlsson. Fast Address Look-up for Internet Routers. In
Proceedings of IEEE Broadband Communications 98, April 1998.

[NL96] G.C. Necula and P. Lee. Safe kernel extensions without run-time check-
ing. In Proceedings of 2nd Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, October 1996.

[Nok98] Nokia. General Packet Radio Service (GPRS) – nokia’s vision for a service
platform supporting packet switched applications. White paper, 1998.

[OCA] The Objective Caml System Release 3.04 – Documentation and user’s man-
ual. Online reference, Institut National de Recherche en Informatique et en
Automatique, http://caml.inria.fr/ocaml/htmlman/.

[OLW98] J.K. Ousterhout, J.Y. Levy, and B.B. Welch. The Safe-Tcl Security Model.
Lecture Notes in Computer Science, 1419:217–235, 1998.

[One99] W. Oney. Programming the Microsoft Windows Driver Model. Microsoft
Press, 1999. ISBN 0-7356-0588-2.

[OSK] OSkit. Online reference, University of Utah Computer Science Department,
http://www.cs.utah.edu/projects/flux/janos/summary.html.

[oST94] National Institute of Standards and Technology. Digital Signature Stan-
dard. Technical Report FIPS-186, U.S. Department of Commerce, May
1994.

[Per96] C. Perkins. IP Mobility Support. RFC 2002, IETF, October 1996.

REFERENCES 202

[Per01] C. Perkins. Mobility Support within IPv6. Internet Draft draft-ietf-
mobileip-ipv6-15.txt, IETF, 2001. Work in progress.

[Pos81a] J. Postel. Internet Control Message Protocol. RFC 792, IETF, September
1981.

[Pos81b] J. Postel. Internet Protocol. RFC 791, IETF, September 1981.

[PrN01] ProgNet: Programmable Network Support for Mobile Services. Research
Project, EPSRC Grant GR/R31461/01, Lancaster University, 2001.

[Rac00] N.J.P. Race. Support for Video Distribution through Multimedia Caching.
PhD thesis, Lancaster University, United Kingdom, September 2000.

[Rie99] E. Riedel. Active Disks – Remote Execution for Network-Attached Storage.
PhD thesis, Carnegie Mellon University, November 1999.

[RWS00] N.J. Race, D.G. Waddington, and D. Shepherd. A Dynamic RAM Cache
for High Quality Distributed Video. In Proceedings of Interactive Dis-
tributed Multimedia Systems and Telecommunication Services (IDMS), vol-
ume LNCS 1905, Enschede, The Netherlands, October 2000. Springer-
Verlag.

[S+98] B. Schwartz et al. Smart Packets for Active Networks. Techni-
cal report, BBN Technologies, http://www.net-tech.bbn.com/smtpkts/-
smart.ps.gz, 1998.

[S+01] S. Schmid et al. An Access Control Architecture for Metropolitan Area
Wireless Networks. In Proceedings of Interactive Distributed Multime-
dia Systems and Telecommunication Services (IDMS), volume LNCS 2158,
pages 29–37, Lancaster, U.K., September 2001. Springer-Verlag.

[SA95] Z. Shao and A.W. Appel. A type-based compiler for standard ML. In
Proceedings of ACM SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 116–129, La Jolla, CA, 1995.

[SBSH01] S. Simpson, M. Banfield, P. Smith, and D. Hutchison. Component Selection
for Heterogeneous Active Networking. In Proceedings of the Third Inter-
national Working Conference on Active Networks (IWAN), volume LNCS
2207, pages 84–100, Philadelphia, USA, September 2001. Springer-Verlag.

[SFG+96] J.M. Smith, D.J. Farber, C.A. Gunter, et al. SwitchWare: Accelerating
network evolution. Technical Report MS-CIS-96-38, University of Pennsyl-
vania, 1996.

[SFSS00a] S. Schmid, J. Finney, A. Scott, and D. Shepherd. Active Component Driven
Network Handoff for Mobile Multimedia Systems. In Proceedings of In-
teractive Distributed Multimedia Systems and Telecommunication Services
(IDMS), volume LNCS 1905, pages 266–278, Enschede, The Netherlands,
October 2000. Springer-Verlag.

REFERENCES 203

[SFSS00b] S. Schmid, J. Finney, A. Scott, and D. Shepherd. Component-based Active
Networks for Mobile Multimedia Systems. In Proceedings of NOSSDAV,
Chapel Hill, NC, June 2000.

[SFW+01] S. Schmid, J. Finney, M. Wu, A. Friday, A.C. Scott, and W.D. Shepherd.
An Access Control Architecture for Microcellular Wireless IPv6 Networks.
In Proceedings of the 26th IEEE Conference on Local Computer Networks
(LCN), pages 454–463, Tampa, FL, November 2001.

[Sha99] Z. Shao. Typed cross-module compilation. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP),
volume 34(1), pages 141–152, 1999.

[SJS+00] B. Schwartz, A.W. Jackson, W.T. Strayer, W. Zhou, R.D. Rockwell, and
C. Partbridge. Smart Packets: Applying active networks to network man-
agement. ACM Transactions on Computer Systems, 18(1):67–88, 2000.

[SL99] M. Sloman and E. Lupu. Policy Specification for Programmable Networks.
In Proceedings of the First International Working Conference on Active
Networks (IWAN), volume LNCS 1653, pages 73–84, Berlin, Germany,
1999. Springer-Verlag.

[SMSF97] J.S. Shapiro, S.J. Muir, J.M. Smith, and D.J. Farber. Operating system
support for active networks. Technical report, 1997.

[SRC84] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4):277–288, November
1984.

[SS00] S. Schmid and A. Scott. QoS Support within Active LARA++ Routers. In
Proceedings of GEMISIS, Manchester, U.K., March 2000.

[SSL] Secure Socket Layer SSL. Online reference, Netscape Corporation,
http://www.netscape.com/security/techbriefs/ssl.html.

[SSV99] V. Srinivasan, S. Suri, and G. Varghese. Packet Classification using Tuple
Space Search. In Proceedings of ACM SIGCOMM, pages 135–146, 1999.

[Ste94] W.R. Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, 1994. ISBN
0–201–63346–9.

[SVSW98] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast Scalable Level
Four Switching. In Proceedings of ACM SIGCOMM, 1998.

[TCM98] S. Thibault, C. Consel, and G. Muller. Safe and Efficient Active Network
Programming. In Proceedings of Symposium on Reliable Distributed Sys-
tems, pages 135–143, 1998.

[THL01] P. Tullmann, M. Hibler, and J. Lepreau. Janos: A Java-oriented OS for Ac-
tive Networks. IEEE Journal on Selected Areas of Communication, 19(3),
March 2001.

REFERENCES 204

[TL98] P. Tullmann and J. Lepreau. Nested Java Processes: OS Structure for
Mobile Code. In Proceedings of 8th ACM SIGOPS European Workshop,
Sintra, Portugal, 1998.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A type-directed optimizing compiler for ML. In Proceedings of ACM SIG-
PLAN ’96 Conference on Programming Language Design and Implementa-
tion, pages 181–192, 1996.

[TMM99] S. Thibault, J. Marant, and G. Muller. Adapting Distributed Applications
using Extensible Networks. In Proceedings of International Conference on
Distributed Computing Systems, pages 234–243, 1999.

[TS97] W. Taha and T. Sheard. Multi-stage programming with explicit annota-
tions. In Proceedings of SIGPLAN Conference on Partial Evaluation and
Semantics-Based Program Manipulation, pages 203–217, Amsterdam, The
Netherlands, June 1997. New York: ACM.

[Tsc99] C. Tschudin. An Active Networks Overlay Network (ANON). In Proceedings
of the First International Working Conference on Active Networks (IWAN),
volume LNCS 1653, pages 156–164, Berlin, Germany, 1999. Springer-Verlag.

[TSS+97] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and G.J.
Minden. A survey of active network research. IEEE Communications,
35(1):80–86, 1997.

[TW96] D.L. Tennenhouse and D.J. Wetherall. Towards an active network archi-
tecture. Computer Communication Review, 26(2), 1996.

[Van97] V.C. Van. A Defence against Address Spoofing using Active Networks.
M.eng thesis, Massachusetts Institute of Technology, June 1997.

[Ver02] D.C. Verma. Content Distribution Networks – An Engineering Approach.
Wiley, 2002. ISBN 0–471–44341–7.

[VRLC97] J. Van der Merwe, S. Rooney, I. Leslie, and S. Crosby. The Tempest – A
practical framework for network programmability. In Proceedings of IEEE
Network, November 1997.

[Wet95] D. Wetherall. Safety Mechanisms for Mobile Code. Internal, Examination
Paper, Telemedia networks and Systems Group, Laboratory for Computer
Science, MIT, 1995.

[WGT98] D.J. Wetherall, J. Guttag, and D.L. Tennenhouse. ANTS: A toolkit for
building and dynamically deploying network protocols. In Proceedings of
IEEE OPENARCH, April 1998.

[WJGO98] I. Wakeman, A. Jeffrey, R. Graves, and T. Owen. Designing a Programming
Language for Active Networks, June 1998.

[WLP98] P. Wickline, P. Lee, and F. Pfenning. Run-time code generation and modal-
ML. In Proceedings of SIGPLAN Conference on Programming Language
Design and Implementation, pages 224–235, 1998.

REFERENCES 205

[WT96] D.J. Wetherall and D.L. Tennenhouse. The ACTIVE IP option. In Pro-
ceedings of the Seventh ACM SIGOPS European Workshop, Connemara,
Ireland, September 1996.

[WVTP97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High
Speed IP Routing Lookups. In Proceedings of ACM SIGCOMM, pages
25–36, September 1997.

[YCN99] J.-H. Yeh, R. Chow, and R. Newman. A dynamic interdomain commu-
nication path setup in active network. In Proceedings of the First Inter-
national Working Conference on Active Networks (IWAN), volume LNCS
1653, Berlin, Germany, 1999. Springer-Verlag.

[YdS96] Y. Yemini and S. da Silva. Towards Programmable Networks. In Proceedings
of IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management, Aquila, Italy, October 1996.

[ZF83] J. Zander and R. Forchheimer. Softnet – An approach to high-level packet
communication. In Proceedings of AMRAD Conference, San Francisco, CA,
1983.

