
QoS based Real-Time Audio Streaming in
the Internet

Diplomarbeit an der Universität Ulm
Fakultät für Informatik

vorgelegt von:

Stefan Schmid

1. Gutachter: Dr. habil. Konrad Froitzheim
2. Gutachter: Prof. David Hutchison

1999

QoS based Real-Time Audio Streaming in
the Internet

Master Thesis at the Universität Ulm
Fakultät für Informatik

submitted by:

Stefan Schmid

1. Examiner: Dr. habil. Konrad Froitzheim
2. Examiner: Prof. David Hutchison

1999

Abstract

Live audio streaming is an important component of Internet multimedia. Today’s Internet,
however, offers only poor support for such streams due to the lack of Quality of Service
(QoS) capabilities.

The work presented in this thesis discusses the problems of real-time audio streaming and
investigates solutions for improving the QoS provided in current and next generation IP
networks.

The contributions of this work can be divided into three parts:

First, the thesis provides an in-depth discussion on important Internet multimedia pro-
tocols and mechanisms intended to improve the QoS of real-time audio streaming in the
Internet. The study evaluates these protocols and mechanisms for use within (interac-
tive) real-time streaming applications and highlights a set of mandatory and recommended
techniques. Current network level QoS mechanisms, especially DiffServ and IntServ, are
compared and examined with respect to their prospective use in a future QoS framework
for the Internet.

Second, WebAudio, a state-of-the-art real-time audio streaming application, is introduced.
This uni-directional audio streaming application is designed in a platform independent
fashion. The “open” stream control interface enables easy Web integration. The WebAudio
server and client applications improve the streaming QoS by means of resource reservation
and adaptation. The multi-streaming capabilities of WebAudio allow the applications to
be used for audio conferencing. An extensive discussion on the application architecture
and the implementation issues of the WebAudio server and client is presented.

Third, the thesis explores the benefits of IPv6 for network QoS mechanisms such as
IntServ/RSVP. This work questions whether there is an efficiency gain in packet clas-
sification due to the employment of network level flow labels. Based on WebAudio and on
a flow label-enabled and extended RSVP implementation, a series of experiments has been
performed. The results indicate that flow label based packet classification performs of the
order of 2-4 times better than standard IPv4 classification, and it outperforms standard
IPv6 classification by about 3-6 times.

The combined results of the work presented in this thesis make a strong contribution
towards understanding how to improve QoS for future multimedia applications running
over the Internet.

Acknowledgments

The author would especially like to thank his supervisors Dr. Konrad Froitzheim and
Professor David Hutchison for their initial inspiration and on-going guidance.

I am grateful for the assistance received from my colleagues in the Distributed Multimedia
Research Group at Lancaster and from other friends. A special vote of thanks should
be made to Andrew Scott and Laurent Mathy, who have commented on the work and
contributed in many ways. Katia Saikoski, Joe Finney and Albrecht Schmidt must also be
credited for reading drafts of the thesis.

Thanks are also due to BT Labs, who offered remote access to their Futures Testbed for
experimental use.

I would also like to express great appreciation to my family and other friends not mentioned
here who continued to provide support and encouragement.

Finally, and most especially I would like to thank my friend Katrin Michlmayr for reading
the thesis and supporting me with encouragement and care throughout this time.

Lancaster, April 1999 Stefan Schmid

Contents

1 Introduction 1
1.1 Traffic Classification . 3
1.2 Quality of Service in the Internet . 5

1.2.1 QoS — What is it? . 5
1.2.2 QoS Parameters . 6
1.2.3 Dynamic QoS Control . 7
1.2.4 QoS within Today’s Internet . 8
1.2.5 Causes of Delay . 9
1.2.6 Causes of Jitter . 10
1.2.7 Causes of Packet Loss . 14

1.3 Application QoS Requirements . 16
1.3.1 QoS Requirements for Real-Time Audio Streaming 16

1.3.1.1 Throughput . 17
1.3.1.2 Delay . 18
1.3.1.3 Delay Jitter . 19
1.3.1.4 Reliability . 20

1.3.2 QoS Requirements for Live Video Streaming 21
1.3.2.1 Throughput . 21
1.3.2.2 Delay . 23
1.3.2.3 Delay Jitter . 23
1.3.2.4 Reliability . 23

1.4 Summary . 24

2 Internet Multimedia Protocols 27
2.1 Network Layer Protocols . 27

2.1.1 Internet Protocol version 6 (IPv6) 29
2.1.1.1 Expanded Addressing Scheme 29

2.1.1.2 Header Format Simplification and Header Extensions . . . 31
2.1.1.3 Anycast and Multicast . 32
2.1.1.4 Security Capabilities . 33

2.1.2 Enhancements for Live Media Streaming 33
2.1.2.1 IPv6 and Performance . 33

iii

iv CONTENTS

2.1.2.2 IPv6 and QoS . 34
2.1.2.3 IPv6 and Multicast . 36

2.1.3 Summary . 37
2.2 Transport Layer Protocols . 38

2.2.1 User Datagram Protocol . 38
2.2.2 Transport Control Protocol . 39
2.2.3 Real-time Transport Protocol . 42
2.2.4 Summary . 45

2.3 Reservation Protocols . 46
2.3.1 RSVP . 47

2.3.1.1 Design Goals . 47
2.3.1.2 Operation Overview . 48
2.3.1.3 Reservation Model and Styles 51
2.3.1.4 Design Principles . 51

2.3.2 YESSIR . 54
2.3.2.1 Design Goals . 54
2.3.2.2 Operation Overview . 57

2.3.3 Summary . 57
2.4 Application Layer Protocols . 58

2.4.1 Hyper Text Transfer Protocol . 59
2.4.1.1 HTTP URLs . 59
2.4.1.2 Overall Operation . 60
2.4.1.3 Message Format . 61
2.4.1.4 Shortcomings . 63

2.4.2 Real-Time Streaming Protocol . 64
2.4.2.1 Protocol Objectives . 64
2.4.2.2 Methods and States . 65
2.4.2.3 Message Formats . 66
2.4.2.4 Relations to Other Protocols 68

2.4.3 Summary . 69
2.5 Summary . 71

3 Real-Time Streaming in the Internet 73
3.1 Application Layer QoS . 73

3.1.1 Packet Transfer . 73
3.1.2 Forward Error Correction . 76
3.1.3 Adaptation . 78
3.1.4 Receiver Buffering . 79

3.1.4.1 Network Delay . 81
3.1.4.2 Processing Delay . 81
3.1.4.3 Summary . 82

3.1.5 Summary . 82

CONTENTS v

3.2 Network Layer QoS . 83
3.2.1 Relative Priority Marking . 83
3.2.2 Service Marking . 84
3.2.3 Differentiated Services . 84

3.2.3.1 Service Model . 85
3.2.3.2 Forwarding Behavior . 87
3.2.3.3 Summary . 87

3.2.4 IP Label Switching . 87
3.2.5 Integrated Services . 88

3.2.5.1 The Framework . 88
3.2.5.2 Reservation Setup Mechanism 89
3.2.5.3 QoS Control Services . 90
3.2.5.4 Summary . 95

3.2.6 Integration of Differentiated and Integrated Services 95
3.2.6.1 Network Architecture . 96
3.2.6.2 Reservation Establishment 97
3.2.6.3 Summary . 97

3.2.7 Summary . 97
3.3 Summary . 99

4 The Application: WebAudio 101
4.1 Application Architecture . 103

4.1.1 Operational Overview . 104
4.1.2 Architecture . 106
4.1.3 Protocols . 108

4.1.3.1 Network Level . 108
4.1.3.2 Resource Reservation . 109
4.1.3.3 Transport Level . 110
4.1.3.4 Application Support Level 111

4.1.4 Application Interface . 112
4.1.4.1 HTTP based Stream Control 113
4.1.4.2 RTSP based stream control 115
4.1.4.3 Data Streaming using RTP 116

4.1.5 User Interface . 119
4.1.6 Scalability Considerations . 121
4.1.7 Security Considerations . 123
4.1.8 Summary . 124

4.2 Implementation Issues . 125
4.2.1 Choice of Platform . 125
4.2.2 Choice of Programming Environment 127
4.2.3 The WebAudio Client: Plug-In vs. Helper Application 128
4.2.4 Real-Time Audio Processing and Task Scheduling 130

vi CONTENTS

4.2.5 Receiver Buffering . 133
4.2.6 Audio Capturing, Encoding and Packet Transmission 135
4.2.7 Audio Codecs . 135
4.2.8 Frame Decoding, Mixing and Audio Playback 137
4.2.9 Multi-Protocol Control Interface . 138
4.2.10 Summary . 141

4.3 Summary . 142

5 Experiments 145
5.1 QoS Analysis in various Network Environments 145

5.1.1 IPv4 Networks . 147
5.1.2 6Bone Networks . 149
5.1.3 IPv6 Networks . 151
5.1.4 Summary . 151

5.2 Resource Reservation . 153
5.3 Performance Analysis of Packet Classification 156

5.3.1 The Benefits of the Flow Label . 156
5.3.1.1 The Layer Violation Problem 156

5.3.2 Theoretical Performance Estimate 158
5.3.2.1 The Model: A Simplified Packet Classifier 158

5.3.3 Experiments . 163
5.3.4 Summary . 166

5.4 Summary . 166

6 Final Remarks 169
6.1 Conclusion . 169

6.1.1 Study of Internet Protocols and QoS Mechanism 170
6.1.2 Real-Time Audio Streaming Application 174
6.1.3 Deployment of Flow Label within RSVP 176

6.2 Future Work . 177
6.2.1 Further Development . 177
6.2.2 Further Research . 178

Bibliography 179

List of Figures

1.1 Traffic and Application Classification . 4
1.2 Packet Clustering . 11

2.1 Internet Multimedia Protocol Stack (related protocols or protocols with sim-
ilar functionalities have the same shading) 28

2.2 The IPv6 Protocol Header . 30

2.3 The IPv6 Extension Header Mechanism . 31

2.4 The IPv6 Multicast Address Format . 33

2.5 The UDP Protocol Header . 38
2.6 The TCP Protocol Header . 40

2.7 The RTP Protocol Header . 44

2.8 IP packet containing real-time data encapsulated in a UDP and RTP packet 44

2.9 Interaction between modules on an RSVP capable node or end host 49

2.10 A simple network topology with the data path (or tree) from the sender (H1)
to the receiver (H2 and H3) and the reverse path (tree) from the receivers
to the sender . 50

2.11 The YESSIR message format . 56

3.1 Timings associated with individual packets and their talkspurts 80

3.2 DiffServ Packet Classifier and Traffic Conditioner 86

3.3 The IntServ Reservation Request Format: FlowSpec and FilterSpec 90
3.4 The Token Bucket Model . 91

3.5 Hierarchical Traffic Control . 94

3.6 A sample Network Configuration: DiffServ capable transit network and two
IntServ capable stub networks . 96

4.1 Operational Overview of the WebAudio Framework 105

4.2 Modular Architecture of the WebAudio Client wa and Server was 107

4.3 Reservation Establishment with RAPI . 110
4.4 The RTCP Header Format . 118

4.5 Netscape’s Web Browser as a Simple User Interface 119

4.6 Object Class Structure of the WebAudio Client and Server Application . . 128

4.7 Time-Critical Task Scheduling within the WebAudio Client 132

vii

viii LIST OF FIGURES

4.8 Audio Capturing, Encoding and Packet Transmission within the WebAudio
Server . 136

4.9 Packet Receiving, Audio Decoding, Frame Mixing and Sound Playback
within the WebAudio Client . 138

5.1 The General Experimental Setup . 147
5.2 Packet Inter-Arrival Times from Lancaster to Ipswich 148
5.3 Packet Inter-Arrival Times from Lancaster to Ulm 148
5.4 Off Peak Times Delay Jitter . 148
5.5 Peak Times Delay Jitter . 148
5.6 Off Peak Packet Loss . 149
5.7 Peak Packet Loss . 149
5.8 The 6Bone Link between the Lancaster IPv6 Testbed and BT Labs 150
5.9 Packet Inter-Arrival Times between Lancaster and Ipswich on IPv4 150
5.10 Packet Inter-Arrival Times between Lancaster and Ipswich in the 6Bone . . 150
5.11 The IPv6 and RSVP Testbed at Lancaster University 152
5.12 Packet Inter-Arrival Times in the local Testbed 152
5.13 The Simple Packet Classification Machine 158
5.14 Analysis 1 – Optimistic-case PPC for variable Pdestaddr (all classifier opera-

tions have a symbolic cost of 1) . 162
5.15 Analysis 2 – PPC for likely realistic relative operation costs (row 4 of Table

5.1) . 162
5.16 Analysis 3 – PPC in the likely realistic case but with 3 sessions, 5 flows and

a flow label collision probability of 10% on average 163
5.17 PPC, computed from Pdestaddr (X axis) and Ψ (Y axis) according to 5.7,

shows that flow label collisions have a minor impact 163
5.18 Progression of the Interface Processing Load while increasing the number of

audio flows . 164
5.19 Extrapolation of the Interface Processing Load progression 164
5.20 Progression of the Interface Processing Load while increasing the number of

audio flows with a constant base load of 4 Mbps on the interface 166
5.21 Extrapolation of the Interface Processing Load progression 166

List of Tables

1.1 Voice Quality Encoding Schemes and Throughputs 17
1.2 Sound Quality Encoding Schemes and Throughputs 18
1.3 Video Quality Encoding Schemes and Throughputs 22

2.1 IPv4 vs. IPv6: What are the differences? 37
2.2 Comparison of UDP, TCP and RTP-on-UDP as Transfer Mechanisms . . . 45
2.3 RSVP Reservation Styles . 51
2.4 RSVP vs. YESSIR: What are the differences? 58
2.5 Syntax of a full HTTP requests . 61
2.6 Syntax of a full HTTP response . 62
2.7 Categorization of HTTP Status-Codes . 62
2.8 Syntax of the Content-Type header field 62
2.9 Overview of RTSP methods, their direction and requirement 67
2.10 Syntax of an RTSP request . 67
2.11 Syntax of an RTSP response . 68
2.12 HTTP or RTSP: How useful are they for session control? 69

3.1 Packet Overheads of different Audio Encodings and Transfer Mechanisms . 75

4.1 HTTP Response Codes used within WebAudio 114
4.2 RTSP Response Codes used within WebAudio 117
4.3 Syntax of RTSP and HTTP Requests . 139
4.4 Mapping of HTTP Requests to RTSP Requests 139

5.1 Operations of the Simple Packet Classification Machine 160

ix

Chapter 1

Introduction

Multimedia streaming applications, also known as continuous media applications, have
become increasingly popular in the Internet. There are several factors responsible for this
development, however, three driving forces behind this growth are especially noteworthy.
First, today’s end-user desktop machines already have extensive multimedia facilities such
as audio and video support built-in (for example, sound cards, frame grabbers, hardware
and software coders). At present time users are accustomed to applications that exploit
those multimedia capabilities and are rather disappointed by software that does not provide
multimedia functionality. Secondly, current Internet technology, including new protocols
specifically designed for multimedia streaming (for example, RTP, RSVP and RTSP) and
experimental multimedia software1 is becoming ready for deployment. Third, the rapidly
growing popularity of the Internet and in particular the World Wide Web (WWW) tempt
many users to explore novel online services and capabilities. Together, these forces explain
the increasing interest in media streaming applications for the Internet.

Continuous media applications can be divided into those that stream pre-recorded contin-
uous media data stored on so called media servers and those that deliver real-time or live
media. The first group is simply called continuous (media) streaming applications. Some
examples are applications for audio and video on-demand or distance learning based on
streaming audio and video clips. A second group is called real-time (media) streaming
applications. This group distinguishes applications that have live data feeds rather than
stored media and is currently of particular public interest driven by the idea of Internet
Telephony, also referred to Voice over IP (VoIP).

Recent research in this area has attracted a number of commercial companies to develop
hardware and software based products for VoIP, which they hope will replace current
telephone systems. Many believe that the two main advantages of VoIP over the Public
Switched Telephone Network (PSTN) are: First, VoIP enables flexible telephony applica-
tions with support for mobility, redirection, and absence that are simply based on user

1Examples include Berkeley’s vic [JMat] and vat [MJ95], UCL’s rat [H+95], GMD Fokus’s NetVoT
[Sch92], and INRIA’s FreePhone [BVGFPne].

1

2 CHAPTER 1. INTRODUCTION

applications for desktop computers. Secondly that VoIP has the potential to reduce cur-
rent call costs (audio compression allows higher utilization of connections). However, this
has not yet been proven in large scale experiments, it remains unclear what impact full
accounting would have on VoIP systems.

Other examples of real-time streaming applications, which have been available for some
time, are multimedia conferencing, distributed workshops and tele-teaching, interactive
multimedia games and radio-broadcasting.

The Internet, which is supposed to provide the common internetwork infrastructure for
current “data transfer” applications and those “new” and very “different” applications,
has only limited support for real-time applications and applications with high demands for
Quality of Service (QoS) (see section 1.2).

The Internet was originally designed for simple data transfer, such as message exchange
(Email), file transfer (FTP) or remote access (Telnet) among inter-connected computers.
These applications have restricted resource demands and/or loose time requirements. This
led to a very simple and scalable design of the network that offers best-effort service, in
which the network does not guarantee anything. This service model was chosen mainly
due to its simplicity. Since most early applications using the network could cope with
a wide range of underlying service quality, a simple best-effort service was appropriate.
The simplicity of this best-effort approach has undoubtedly contributed to the wide scaled
deployment of the Internet.

Over time the Internet has become a victim of its own success. In the beginning, it was
mainly known as a military and research network. Later, in the nineties, the WWW
attracted many users as convenient information service. And now, users, still fascinated
by the extensive opportunities of the world-wide internetwork, are inspired by the idea
of using the Internet for real-time audio and video communication or video-on-demand
applications. As a result of this fast development, large sections of the Internet are often
heavily overloaded. The simple best-effort service which shares the bandwidth fairly among
all users leads the network into congestion. This results in increased delay variations, called
jitter, and packet loss.

With regard to network congestion, real-time streaming applications contribute heavily to
congestion, because of their large bandwidth requirements, and suffer from it more than
other applications. Non-real-time applications simply slow down when congestion occurs
since data transfer takes longer to complete and lost packets can be be retransmitted.
Real-time applications, in contrast, become unusable under heavy load; real-time data
that arrives late is normally obsolete.

The work presented within this thesis aims to contribute to the area of Internet real-time
media streaming in several ways. First, it provides a basic analysis of the problems caused
by the lack of QoS mechanisms in the current Internet. Second, a study of state-of-the-art
Internet multimedia protocols which explores their usability and importance for current
Internet multimedia applications are presented. The study outlines some experimental

1.1. TRAFFIC CLASSIFICATION 3

protocols which aim to improve the QoS offered to real-time streaming applications. Third,
the thesis introduces a new real-time audio streaming application called WebAudio (see
section 4) to which built-in support for the next generation Internet protocol, namely
IPv6 (see section 2.1.1), and QoS based on the Integrated Services (IntServ) architecture
(see section 3.2.5) and the Resource reSerVation Protocol (RSVP) (see section 2.3.1) were
added. Fourth, the thesis presents a theoretical and experimental analysis of the benefits
of IPv6 flow labels (see section 5.3) for QoS mechanisms based on IntServ and RSVP. And
finally, the thesis provides a critical discussion on the resource reservation protocol RSVP
and outlines a few extensions.

Before the discussion on the issues of real-time media streaming and QoS is carried on,
section 1.1 classifies real-time streaming applications and their media traffic in relation to
other Internet applications and traffic characteristics. Section 1.2 explores the common
understanding of QoS and discusses what is currently provided in the Internet. Third,
section 1.3 discusses the QoS requirements of real-time media streaming application and
in particular for audio streaming.

1.1 Traffic Classification

Internet traffic can be divided into two fundamentally different traffic types: real-time
traffic and non-real-time traffic which is often referred to as data traffic [B+94] or discrete
data traffic. Figure 1.1 respectively illustrates a traffic and application classification.

Real-time applications which deliver continuous data streams usually have regular (i.e.
constant bit, frame or packet rates) and long lasting (i.e. video clips or live audio) traffic
characteristics. These real-time streaming applications usually process the data as soon as
a defined amount, such as a video frame, has arrived. Real-time applications which do not
process data streams usually produce bursty interactive traffic with very strict end-to-end
delay constraints. These applications can be classified as real-time control applications (for
example, interactive games or remote-machine control).

The characterization of “real-time” is a relative or elastic property. In fact, one could
say that all “real-time” applications are only “quasi-real-time” applications. All so-called
real-time applications tolerate small delays. In comparison to elastic applications, they
are more sensitive to delay and delay variations. The important QoS properties for “real-
time” communication, namely delay, jitter and loss, depend entirely on the application
itself. Applications to remote-control fast machines, for example, have much stricter timing
requirements than a video-on-demand application.

Real-time streaming applications with loose time constraints are also referred to as tolerant
real-time streaming applications. Applications with very strict time requirements, on the
other hand, are called intolerant or rigid real-time streaming applications.

4 CHAPTER 1. INTRODUCTION

Applications
Real-time Control

Real-time Discrete Traffic
(e.g. machine control, games)

Real-time Applications
Real-time or Time-critical Traffic

Internet Applications
Internet Traffic

Real-time Continuous Traffic

Application
Real-time Streaming

(e.g. FTP, WWW)

Traffic

Interactive Bulk

Traffic

(e.g. Telnet, X, NFS)

Interactive Burst
Traffic

(e.g. Email, News)

Asynchronous Bulk

Applications
Tolerant and Adaptive

(e.g. vic, vat, webmedia)

Applications
Rigid and Intolerant

(e.g. telephony)

Non-real-time or Elastic Applications
(Discrete) Data Traffic

Figure 1.1: Traffic and Application Classification

Applications which have by their nature very strict QoS constraints, such as real-time audio
streaming applications (due to the strong sensitivity of the human sound perception), can
become tolerant to QoS interruptions by means of adaptation (see section 3.1.3). Rigid
applications, for example, have a fixed playback point, whereas adaptive applications are
capable of adjusting their playback point according to the observed network QoS.

Elastic applications like Telnet, FTP, WWW, Email, etc. produce discrete data traffic,
where the individual data packets are sent loosely coupled and without time constraints
between each other. These applications usually wait for certain amount of data to arrive,
before starting to process them. Therefore, long delays and jitter, as a result of bad network
conditions, degrade the performance, but do not affect the final outcome of the data trans-
fer. Elastic applications can be further classified according to their delay requirements.
Bulk traffic (for example, Email, News), asynchronously delivered in the background, op-
erates well even with high transmission delay. Interactive burst traffic (for example, Telnet,
X, NFS), on the other hand, requires minimal delay to achieve acceptable responsiveness.
Interactive bulk traffic (for example, FTP, WWW) operates well with medium delays.

(Discrete) Data traffic is known to be of a bursty nature. This is simply due to the fact
that elastic applications usually send out data as fast as the connection allows. Moreover,
these connections are usually very transient. They exist only to transfer one or at most a
few packets of data. As a result, data traffic is, in general, considered to be unpredictable.

1.2. QUALITY OF SERVICE IN THE INTERNET 5

1.2 Quality of Service in the Internet

The usability or the success of continuous multimedia application depends largely on the
Quality of Service (QoS) they provide to the end users.

As discussed in detail later in section 1.3.1, the quality requirements of real-time audio
streaming applications are crucial. Delayed data transfer, even if delayed only fractionally
too much, makes two-way communication intolerable. Loss of signals is also instantaneously
recognized by human sound perception. Thus, the QoS offered by Internet multimedia
applications is an important issue for their usability and success.

The next section brings to light what Quality of Service really means to people.

1.2.1 QoS — What is it?

QoS is currently one of the most elusive and confusing topics in the area of data networking.
One reason surely comes from the expression itself. Both words, quality and service, are
fairly vague and ambiguous. Another reason might be that QoS has different meanings
in different contexts or to different people. It is important to understand the different
meanings. To some, QoS means introducing an element of predictability and consistency
into existing best-effort networks. To others, it means obtaining higher transport efficiency
or throughput from the network. And yet to others, QoS is simply a means of differentiating
classes of data service. It may also mean to match the allocation of network resources to
the characteristics of specific data flows.

To examine the concept of QoS in detail, its two operative words, quality and service, are
first examined.

Quality in networking is commonly used to describe the process of delivering data in a
certain manner, sometimes reliable or simply better than normal. It includes the aspect of
data loss, minimal delay or latency and delay variations. Determining the most efficient
use of network resources, such as the shortest distance or the minimal congested route, is
also an issue expressed by quality.

The term service has several meanings. It is generally used to describe something offered
to end-users of a network. Services can provide a wide range of offerings, from application
level services, such as Email, WWW, etc., to network or link level services such as end-to-
end connection (for example, TCP connections or ATM virtual channels).

The composition of the terms quality and service in the context of networking, however,
puts forth a fairly straightforward definition: network QoS is a measurement of how well
the network operates and a means to define the characteristics of specific network services.
Accordingly, the ISO standard defines QoS as a concept for specifying how “good” a
networking service is. Therefore, QoS provides the means to evaluate services. For example,
Internet Service Providers (ISP) provide more or less the same service, except that they
usually provide different quality.

6 CHAPTER 1. INTRODUCTION

1.2.2 QoS Parameters

QoS parameters provide a means of specifying user requirements that may or may not be
supported by underlying networks. QoS can only be guaranteed at higher layers if the
underlying layers are also able to guarantee this QoS. The QoS values are usually agreed
between the service provider and the customer at the time the customer subscribes to a
particular service. Here, the customer could be another service provider on a lower level
(an instance who uses the service) whereas the service provider offers some form of services.
QoS parameters also form a basis for charging customers for pre-specified services.

With the increasing interest in continuous media streaming applications such as audio and
video, QoS is becoming more and more important. There are several aspects of QoS to
be considered. For example, to support video communication high throughput is required
and, therefore, high bandwidth guarantees will have to be made. Audio communication, in
contrast, does not usually require high bandwidth. End-to-end delay and delay variations
are other factors that must be taken into account for time-critical traffic. In particular, in-
teractive or real-time media streaming communication imposes stringent delay constraints,
derived from human perceptual thresholds, which must not be violated. Jitter must also be
kept within rigorous bounds to preserve the intelligibility of audio and voice information.

A set of QoS parameters [FH98] suitable for characterizing the quality of service of indi-
vidual “connections” or “data flows” is as follows:

Delay

End-to-end transit delay is the elapsed time for a packet to be passed from the
sender through the network to the receiver. The higher the delay between the sender
and receiver, the more insensitive the feedback loop becomes, and therefore, the
protocol becomes less sensitive to short term dynamic changes in the network. For
interactive or real-time applications the introduction of delay causes the system to
appear unresponsive and as a result in many cases unusable.

Jitter

The variation in end-to-end transit delay is called jitter, also often referred to as
delay variation. In packet-switched networks jitter defines the distortion of the inter-
packet arrival times compared to the inter-packet times of the packet transmission.
High levels of jitter are unacceptable in situations where the application is real-time.
In such cases the distorted data can only be rectified by increasing the receiver’s re-
assembly buffer, which effects the end-to-end delay, making interactive sessions very
ponderous to maintain. The strong interconnection between the end-to-end delay
and the jitter should be noted. The jitter in the network has a direct impact on the
minimum end-to-end delay that can be guaranteed by the network.

1.2. QUALITY OF SERVICE IN THE INTERNET 7

Bandwidth

The maximal data transfer rate that can be sustained between two end points of the
network is defined as the bandwidth of the network link. It should be noted that the
bandwidth is not only limited by the physical infrastructure of the traffic path within
the transit networks, which provides an upper bound to the available bandwidth, but
is also limited by the number of other flows sharing common resources on this end-to-
end path. The term bandwidth is used as an upper bound of the data transfer rate,
whereas the expression throughput is used as an instant measurement of the actual
exchanged data rate between two entities. Network applications, for example, have a
certain bandwidth disposable between two nodes, but the amount of data they really
transmit is determined by their throughput. The data throughput of an application
is usually highly dynamic, depending on its needs.

0 ≤ Throughput ≤ Bandwidth (1.1)

Reliability

This property of the transmission system determines the average error rate of the
transit network. The error rate can be subdivided into bit error rate and packet or cell
error rate. A poorly configured or poorly performing switching system can reorder
packets during transmission, delivering packets to the receiver in a different order
than originally transmitted, or even drop packets through transient routing loops. In
the case of packet audio or video unreliable networks may induce distortion in the
original signal at the receiver’s end. Transport level (or higher level) mechanisms
are required to detect and correct reordered packets. Usually, re-assembly buffers,
which implicitly increase the playback delay and hence decrease the responsiveness,
are deployed to rectify disordered packets or to reconstruct lost packets.

The QoS requirements should be negotiated end-to-end at the time of connection or data
flow establishment. Preferred, acceptable and unacceptable tolerance levels for each of
these QoS parameters should be quantified and expressed. The finally agreed QoS should
then be guaranteed for the duration of the transmission or at least an indication must be
provided if the contractual values are violated.

1.2.3 Dynamic QoS Control

Because of the increasing demand on QoS requirements, current and future communication
architectures (for example, applications, networks, etc.) must be extended to support
dynamic QoS selections so that customers are able to precisely tailor individual transport
connections to their particular requirements.

It is usually disadvantageous to limit the QoS negotiation at the time of connection estab-
lishment. Specified QoS levels do not often remain valid for the lifetime of the transmission.

8 CHAPTER 1. INTRODUCTION

Hence, dynamic QoS control which allows users to alter the QoS of a connection or data
flow during the session is preferential. A user might decide during an audio session to
upgrade the audio quality from that of a standard telephone quality to CD quality.

State-of-the-art multimedia applications make use of dynamic QoS control mechanisms to
dynamically negotiate their instantaneous QoS demands. The benefits of dynamic QoS
control mechanisms are mainly flexibility and cost reduction. First, the application can
change its QoS level whenever this is desired rather than having to stick to the initial
negotiation. Second, if lower QoS is required, service costs can be reduced by simply
degrading the QoS level.

In order to enable QoS (re-)negotiation at the transport level, the necessary support must
be provided either within or below the transport protocol. Thus, mechanisms are required
to dynamically alter link-level QoS properties on intermediate network nodes. One possi-
bility is to reconfigure the network by means of resource reservation protocols (see section
2.3) where resources are reserved in the intermediate nodes along the transmission path.

1.2.4 QoS within Today’s Internet

This section discusses the relation of QoS and the current Internet or, in other words, what
form of QoS is supported within today’s Internet?

The Internet is composed of a large collection of intermediate network nodes, called routers,
and network links connecting the routers. Upon the arrival of a packet, routers determine
the next hop interface (the link to the next router or destination) and place the packet in an
output queue of the selected interface. The network links have specific QoS characteristics
with respect to delay, jitter, bandwidth and reliability. The QoS properties of network links
depend entirely on the link layer characteristics and physical transmission medium.

If the amount of traffic transmitted on a particular link exceeds the available bandwidth of
the link for a period of time, congestion occurs that results in poor service quality. In such
cases the router’s output queue of the saturated transmission link fills up. Variations in the
queue length have a direct impact on the jitter. They increase the jitter and, as a result,
the end-to-end delay. If high load remains until queues overflow, routers are forced to
discard packets which in turn reduces the reliability. As a result, packet loss can be used
as an identifier for congestion in the network (see section 2.2.2). Adaptive applications
or transport protocols (for example, TCP, see section 2.2.2) reduce their sending rate, or
the bandwidth used by the application, upon detection of network congestion to minimize
packet loss.

Poor service quality might also be a result of instabilities in the routing protocol. Such
instabilities may cause routers frequently to change their choice of the best next-hop in-
terface, causing data packets of the same flow to take different transmission paths. This
bears the risk of out-of-order packet delivery and packet loss reducing reliability. Reorder-
ing buffers, required to rearrange the original packet ordering, increases jitter.

1.2. QUALITY OF SERVICE IN THE INTERNET 9

This brief operational overview shows that the Internet, as we know it today, has no
explicit support for QoS. Hence, it is rightly called a best-effort network lacking of any
kind of QoS management or control. Each network element simply tries to do the “best” it
can. Since there is at this point in time no QoS provided in the Internet, its applications
cannot negotiate their QoS requirements with the network nodes and install or reserve the
resources needed. As a result, today’s Internet applications must accept what they get –
good or bad.

Several techniques have been developed which allow applications to adjust their operation
to dynamically adapt their QoS requirements to changes in actual QoS provided by the
network. Those techniques, generally called adaptation, enable multimedia applications
to provide tolerable service on top of simple best-effort networks. Even though, adaptive
applications significantly improve performance under moderate to high network load, they
can only account for limited service degradation. Starting a communication session, such
as for example an IP phone call, may be worthwhile only if a certain QoS level can be
guaranteed. However, in order to achieve guaranteed quality, the network must be aware
of the QoS properties and keep track of the guarantees already made.

1.2.5 Causes of Delay

The one-way, end-to-end delay seen by a data stream is the accumulated delay through the
entire data flow pipeline including sender coding and packetization, network transmission,
reception and decoding.

Some delays, such as coding and decoding, are of fixed duration while others are non-
deterministic due to highly dynamic network or process scheduling conditions. For ex-
ample, the CSMA/CD mechanisms of the Ethernet LAN link layer protocol introduces a
variable delay which is deemed to be jitter.

The minimum end-to-end delay encompasses all time lags which remain constant for all
transmitted units. The maximum end-to-end delay is determined by the sum of the mini-
mum delay and the maximum jitter (compare with equation 1.2).

MIN(Delay) ≤ Delay ≤ MIN(Delay) + MAX(Jitter) (1.2)

The transmission delay of packets (or cells) in the network results from the accumulation
of the processing times in every intermediate router (or switch) between the source and
the destination node and the transmission time on the physical links on this path. The
transmission time on the network link is dependent on the physical medium and the link
layer protocol. Well known link characteristics are, for example, ATM providing band-
widths including 155 Mbps and 622 Mbps, basic Ethernet (IEEE 802.3) offering 10 Mbps,
or Fast Ethernet supporting up to 100 Mbps.

10 CHAPTER 1. INTRODUCTION

The processing time within the network nodes depends mainly on the forwarding mech-
anism in use. Switches or routers that process the packet in hardware require very little
processing time. Such devices are usually found in the core of the network where many
links are concentrated. Software based solutions depend on their implementations and
on the processing engines. Such, so called, “slow path” routers require significantly more
processing time (of the order of 1 ms) to forward a packet (or cell).

The processing time of the encoding and packetization at the sender, and the reception
and decoding at the receiver depend mainly on the performance of the processors and the
encoding and decoding algorithm. Some encoding formats (for example, ADPCM) require
very little computation whereas others (for example, GSM speech encoding [C+89]) require
significant processing power. Depending on the coding scheme, the time to coding the
media frames might vary due to the differences in the media. These variations, however,
are usually hardly recognizable.

Even though the processing time within end hosts is mainly fixed due the constant process-
ing task. Variable latency might occur due to process scheduling irregularities and hence
introduce jitter.

1.2.6 Causes of Jitter

Packet queuing in the network to compensate traffic bursts is widely recognized to be the
main cause for delay variations. This section explains how queuing leads to jitter. Yet,
queuing is not the only reason for delay variations. Jitter is also an artifact of process
scheduling in end hosts and software based packet forwarding in network routers.

Packet Queuing

If all the packets of a flow traveling along the same path encounter the same queue lengths,
they all experience the same transit delay. The end-to-end delay might be high, but the
delay variance is zero. Thus, jitter is caused when consecutive packets experience different
waiting times in queues.

Queues grow in a switch or router whenever the sum of the incoming data rates for one
outgoing link is larger than the bandwidth of this outgoing link. In cases where bursty
traffic competes for the available link bandwidth another noteworthy effect called packet
clustering [Sch97] occurs. Bursty flows competing for bandwidth on a network link will
build up queues on the router’s outgoing interface. Thus several packets of the same
flow might arrive while the first packet is still queuing. Packets of such packet clusters
are then sent out very shortly after one another. Figure 1.2 illustrates how these packet
clusters develop. At all subsequent hops these packets arrive (closely) together and the
same might happen again. Thus, it is likely that clusters grow with the number of hops
along a transmission path.

1.2. QUALITY OF SERVICE IN THE INTERNET 11

Competing Traffic

Packet Clustering

Growing Queues

Figure 1.2: Packet Clustering

The impact of the length of the path on the end-to-end delay variation is difficult to predict.
Under most circumstances the maximum delay variation increases linearly with the number
of hops in the path. However, the average jitter is less dependent on the number of hops
since queue waiting periods in independent queues often cancel each other partially out.

If packet scheduling is done in a strict First-In First-Out (FIFO) manner, a difference in
the delay of two consecutive packets means that at least one queue grew or shrunk in the
meantime. Under the theoretical assumption that queuing is the only cause of jitter, the
maximum delay variation is bounded in the case of strict FIFO queuing. It is determined
by the sum of the maximum queue lengths on the path. As more enhanced scheduling
and queuing mechanisms (which support, for example, different priority queues) are used,
certain flows might temporarily remain unserviced. This of course leads, in the worst case,
to unbounded and unpredictable delay variations.

In order to fix the delay variation problems caused by queuing mechanisms in the network,
delay sensitive applications need to deploy services which enable the total time spent in the
queues to be limited. Resource reservation mechanisms such as RSVP (see section 2.3.1),
for example, are capable of negotiating the maximum end-to-end delay. Nothing can be
done about the transmission path length. Widely used networks do not provide shortcuts
in order to limit the hop count.

12 CHAPTER 1. INTRODUCTION

Scheduling

Besides the jitter caused by queuing in network nodes, process scheduling within the end
user hosts and software based switches or routers is often partially responsible for the delay
variations.

Most current operating systems such as UNIX derivatives like Linux, FreeBSD, Solaris, and
other operating systems such as Windows 95 or Windows NT provide multitasking, either
cooperative or preemptive. Multitasking operating systems rely on a process scheduler
that activates and deactivates the individual processes in an appropriate manner. This in
turn usually prevents the processes from meeting the time constraints of time-critical or
real-time applications.

The fact that hardware interrupts (for example, interrupts from a sound device) are inter-
cepted and processed in kernel space2, application processes which might have to perform
one form of data processing (for example, audio applications have to encode and send the
audio data) are not scheduled instantaneously. The variable time lag between the hardware
interrupt and the scheduling time also causes delay variation.

The significance of jitter caused by OS scheduling depends on the scheduling granularity
which determines the average and maximum waiting time until a process gets rescheduled
and the maximum end-to-end delay bounds.

Experiments with our audio application showed that in the case of real-time audio stream-
ing, jitter caused by end host scheduling can be significant. These applications demand a
maximum end-to-end delay of only a few hundred milliseconds (see section 1.3.1.2). Since
transmission and processing delays in packet audio already consume most of the accept-
able delay (of the order of hundred milliseconds), the additional delay caused by process
scheduling should be as small as possible. In addition, in the case of live audio communi-
cation, the audio data is usually sent in small packets that encompass as little as 20 ms or
40 ms audio samples. Thus, if the scheduling delay exceeds this time, the packet will be
late leaving the sending host.

Running Windows 95 maximum scheduling jitter of up to 1.8 seconds has been experienced.
Especially if large disk operations are performed (for example, starting memory consuming
applications like Netscape’s Web browser), such immense delay variations might occur.
With Free-BSD and Linux (without any real-time kernel support), maximum scheduling
jitter up to several hundred milliseconds has been measured. The latency could be caused
by the fact that disk access is also interrupt driven; disk operations may by implemented
such that they are performed within the interrupt routine in order to improve overall
system performance.

Pure single task operating systems such as MS-DOS, or operating systems which allow
applications to process interrupts such as Mac-OS, are generally capable of meeting the

2This terminology is used in the context of UNIX operating systems; Microsoft Windows systems call
it “Ring 0”.

1.2. QUALITY OF SERVICE IN THE INTERNET 13

strict time constraints of real-time audio applications. These operating systems do not
distinguish between processing in kernel space and user space3, and hence simplify process
application code within hardware interrupts. Upon a hardware interrupt, the program
counter is simply set to the user application which processes the interrupt (for example,
captures the audio data from the sound device, encodes the audio samples and sends them
on the network). No context switch between kernel space and user space, and between
processes is required.

Operating systems that make a strict distinction between kernel and user space have three
basic options to work around the scheduling problem. The first option is to modify the
kernel process scheduler in order to get immediate control over the processing upon a time
critical event. The second option is to use process priorities and assign high priorities to
time-critical processes. The third option is to implement the time critical operations of the
application in kernel space. Thus, the time-critical data processing would be performed
in kernel space whereas the user space part of the application would interface the kernel
module only for initialization and control purpose.

Finally, one can conclude that the only way to prevent jitter caused by irregularities in end
hosts and network routers is to use real-time capable operating systems (such as Mac-OS
or MS-DOS), special real-time enabled operating systems (such as RTOS, real-time Linux,
etc.). The latter are topics of current research.

Jitter Compensation

Delay jitter caused by either the queuing within the network or by process scheduling in-
creases the total end-to-end delay of transmitted packets. Since for real-time or interactive
applications the end-to-end delay is probably the most crucial property, it is important to
keep the delay variation as small as possible.

Packets, which miss their playback point (even by only a few milliseconds), are usually
immediately discarded by the receiving application (or a filter such as a traffic shaper
within the network). Packets arriving only a little late might cause the receiver to adapt
its receiving buffering to accommodate these packets in future. Generally, delaying the
playback point improves the playback quality (less packets are discarded) but decreases
the responsiveness of real-time applications (more total end-to-end delay). This shows the
trade-off between interactivity and reliability (accuracy or fidelity) that aggravates QoS
based media streaming.

Adaptive playout estimation mechanisms enable optimal buffer adjustment depending on
instantaneous network characteristics. See section 3.1.4 for further discussions.

3In Microsoft Windows this is called “Ring 3”.

14 CHAPTER 1. INTRODUCTION

1.2.7 Causes of Packet Loss

Packet switched networks are often unreliable in nature. In particular, significant parts
of the Internet suffer greatly from erroneous data transmission, especially loss of packets.
Packets are frequently discarded due to queue overflows in routers or end-user machines.
As a result, the packet loss rate is an important QoS property for Internet multimedia
application.

When packets carrying video data are lost, the video application cannot update the frames
adequately. The image may become inconsistent (for example, moving objects appearing
twice) or may change abruptly upon arrival of the consecutive packets. However, in audio
applications, packet loss leads to crackles and gaps in the audio signal which makes speech
difficult to understand and music less enjoyable. The human eye is known to act as an
integrator of visual information whereas the ear acts as a differentiator. Another fact is
that visual data carries in general more implicit redundancy than audio signals. Thus, in
general one can conclude that packet loss within audio streaming is more disturbing for
human listeners than erroneous video transmission.

Whereas some packets are lost during the transmission from the source to the destination,
most “lost packets” are consciously discarded for several reasons:

First, packets are most frequently dropped because of congestion within the network. If
a network node runs out of buffer space or, in other words, the packet queues overflow,
packets must be discarded. A router usually has incoming buffers, system buffers and
outgoing interface buffers. If packets are dropped due to an incoming queue overflow, it is
called an input drop. Such input drops occur when the router cannot process packets fast
enough. Packet loss due to input drops should not normally appear, since it is the result of
a badly engineered system. Output drops, in contrast, occur when the outgoing link is too
busy. This clearly is not a design problem of the router but an issue of available network
bandwidth on the link.

Second, routers use packet dropping as a mechanism to avoid congestion in the network
and prevent queues from reaching their maximum limits. One such technique is known as
Random Early Detection (RED) mechanism (see section 2.2.2). By dropping packets before
the queues hit their maximum limits, sophisticated transport protocols such as TCP (see
section 2.2.2) can early detect potential congestion and, as a result, reduce the data rate.
Even though it has been proven that this control mechanism fairly shares the network
bandwidth among its users, it only works in an equitable manner as long all transport
protocols play according to the rules. For example UDP (see section 2.2.1) does not back
off its transmission rate when congestion occurs. Note that it is also impossible for UDP
to deploy transmission control mechanisms due to the lack of feedback information. Since
the UDP portion of the Internet traffic becomes larger, TCP’s RED mechanism becomes
less effective and rather disadvantageous for TCP traffic.

And last, damaged packets as a result of erroneous data transmission are discarded. Bit
errors are usually recognized due to the checksum provided within the packet header;

1.2. QUALITY OF SERVICE IN THE INTERNET 15

these checks are often done on multiple levels (for example, the Ethernet link layer and
TCP/UDP transport layer). Reliable protocols like the Ethernet link layer protocol or
the TCP transport layer protocol initiate retransmission of damaged packets, whereas
unreliable protocols such as UDP simply drop the packets. Packets dropped due to bit
errors, however, become less common in today’s fiber networks. Within wireless networks,
in contrast, bit errors are frequent.

In the current Internet, packet loss is often bursty in nature. Packet clustering (see section
1.2.6) due to congestion in the network increases the likelihood of consecutive packet loss.
Experiments [B+97a] confirm this theory. Another analysis performed at INRIA [BC95]
shows, however, that the probability of consecutive packet loss decreases with the number
of lost packets in a sequence.

The significance of packet loss depends usually on the application. In the case of non-time-
critical applications, packet loss can easily be fixed by means of retransmission. However, if
time constraints do not allow such additional delays (caused by retransmission), packet loss
becomes a real problem. More sophisticated mechanisms such as Forward Error Correction
(FEC) (see section 3.1.2) are developed in order to recover from packet loss. This in-band
error correction mechanism recovers loss by means of redundancy and thus performs only
well as long as lost packets are isolated to some extent. Another mechanism called traffic
shaping (see section 3.1.1), which resolves problems of packet clusters by restoring the orig-
inal (transmission) time gaps between consecutive packets again, plays an important role in
conjunction with FEC mechanisms. Although the additional end-to-end delay introduced
by FEC mechanisms is relatively small compared to retransmission techniques, the maxi-
mum delay constraints of real-time or interactive applications prevents FEC mechanisms
to take more than a few consecutive losses into account.

Delay, Jitter and Packet Loss

Finally, the extent to which the QoS properties of delay, jitter and packet loss are correlated
in the context of packet switched networks such as the Internet must be considered.

Intuitively, one expects that flows with high packet loss rates also have high jitter. While
this is certainly true for heavily congested paths, flows with high packet loss rates do not
necessarily have high jitter in the arriving packets. Also, flows with low packet loss rates
might have high jitter.

Assuming that jitter is mainly caused by packet queuing within network nodes, as a con-
sequence of packet bursts and clusters (see section 1.2.6), it becomes clear that there is no
implicit relationship between packet loss and delay variation for low congested paths. Full
queues do not lead to jitter; it is the growing and shrinking of queue length that introduces
delay variations. Therefore, bursty flows competing for bandwidth on the outgoing link
are responsible for delay variations independent from the degree of long-term congestion.

16 CHAPTER 1. INTRODUCTION

Even if the available bandwidth is hardly used, there might be remarkable delay variation
caused by bursty traffic.

Another issue regarding jitter and packet loss arises from the maximum end-to-end delay
that is tolerable for real-time or interactive applications. Packets, which exceed the toler-
able end-to-end delay due to very high jitter, must be discarded. Late packet arrival is for
these applications equivalent to packet loss.

1.3 Application QoS Requirements

Historically, the Internet was designed for discrete data traffic and elastic applications. For
this purpose, a packet-switched architecture where data packets are treated as independent
units (or datagrams), seems to be a very flexible and simple approach. As a result, the
Internet has evolved into a packet-switched store-and-forward network from its beginning.
Due to the standing requests of a steadily increasing number of users, the network require-
ments for continuous media and real-time streaming applications changes drastically.

In continuous media, especially video and audio, data has inherent temporal and spatial
relationships that must be carefully respected. Violations degrade the quality of application
performance drastically or even make these applications useless. The perceived quality of
media streaming applications is considered to be very closely related to the QoS provided
by the network. The requirements of time-critical applications are commonly expressed as
a set of values representing bandwidth, delay, jitter and loss rate constraints for the system
(or network), known as QoS parameters (see section 1.2.2).

In general, continuous streaming applications can cope with QoS that is significantly lower
than real-time streaming applications. The lack of strict absolute time constraints allows
buffering mechanisms (see section 3.1.4) to compensate for long end-to-end delays and
retransmission techniques to resolve problems caused by high packet loss rates. Real-time
streaming applications, on the other hand, can exploit buffering techniques only to a very
limited extent, otherwise they violate their end-to-end delay constraints and, as a result,
lose their responsiveness. Retransmission techniques introduce too much additional delay
in current wide area networks.

The following sections investigate the QoS requirements of real-time streaming applications
in detail. The QoS requirements of the different media, namely audio and video, are
analyzed separately.

1.3.1 QoS Requirements for Real-Time Audio Streaming

This section examines the QoS requirements of real-time audio streaming applications.
Since most applications require either voice or high quality sound encoding, these two
classes are examined in particular.

1.3. APPLICATION QOS REQUIREMENTS 17

1.3.1.1 Throughput

The throughput requirements of audio streaming applications depend entirely on the en-
coding scheme used for the audio data transmission. The encoding format is usually deter-
mined by the required sound quality of the application. Tools which simply transfer voice
information usually deploy other encoding techniques – especially designed for the purpose
of voice data transmission (for example, Voice Coder (VOCODER)) – than applications
which transmit high quality music information.

A. Voice Encoding

The traditional digital voice encoding technique, known as 64 kbps Pulse Code Modulation
(PCM), corresponds to the sound quality everybody knows from the public telephone
system. It is thus referred to as Telephone Quality audio. The encoding scheme is defined
within the ITU G.711 standard. The mono analog signal is sampled 8000 times per second
and each sample encoded in 8 bits. No compression is used. The resulting bit rate of
telephone quality sound is therefore 8bits × 8000Hz = 64kbps.

In the 1980s a number of encoding and compression techniques were developed enabling
more efficient digital voice encoding than G.711. Telephone quality can also be achieved
with only 32 kbps simply by applying a more sophisticated encoding technique, known
as Differential Pulse Code Modulation (DPCM) – a loss-free encoding. Slightly lower
voice quality can be provided with Adaptive Differential Pulse Code Modulation (ADPCM)
encoded digital voice at 40, 32, 24, and 16 kbps. More recent encoding algorithms (for
example the Linear Predictive Coding (LPC) or Code Excited Linear Prediction (CELP)
voice coder) can reduce bit rates as low as 2.4 or 4.8 kbps for digital voice.

Voice Quality Encoding Technique (Standard) Bit Rate

Telephone Quality PCM (G.711) 64 kbps
Telephone Quality DPCM 32 kbps
(Lower) Telephone Quality ADPCM (G.721, G.726, G.727) 40, 32, 24, 16 kbps
Lower Telephone Quality LD-CELP (G.728) 16 kbps
GSM Phone Quality GSM 13 kbps
Low-bandwidth Voice CELP (Federal-Standard-1016) 4.8 kbps
Low-bandwidth Voice LPC-10 (Federal-Standard-1015) 2.4 kbps

Table 1.1: Voice Quality Encoding Schemes and Throughputs

B. High Quality Sound Encoding

CD Quality is commonly recognized as a high quality sound encoding. The CD audio
standard is based on sampling the analog signal at 44.1 kHz, each sample being coded

18 CHAPTER 1. INTRODUCTION

with 16 bits. The result is 705.6 kbps for one monophonic channel. As compact discs are
stereophonic, the throughput required to transmit a full stereophony sound in CD quality
is 1411.2 kbps.

Within the last few years several encoding or compression techniques for CD quality sound
have been developed (see also [Fro97, Gadml]). MPEG Layer-1 enables stereo CD quality
encoding with a bit rate of 384 kbps. It should be noted that both stereo channels are
multiplexed in the same stream. The MUSICAM scheme, adopted for MPEG Layer-2,
allows encoding stereophonic CD quality sound with “medium” bit rates of 248 or 192
kbps. More advanced encodings (for example, MPEG Layer-3 using perceptional coding)
achieve near CD quality at 64 kbps per audio channel.

Table 1.2 summarizes the throughput requirements of various audio types of audio streams.

Sound Quality Encoding Technique (Standard) Bit Rate

CD quality CD-DA (stereo) 1.4 Mbps
CD quality MPEG Layer-1 (stereo) 384 kbps
Near CD quality MPEG Layer-2 (stereo) 192-248 kbps
Near CD quality MPEG Layer-3 (stereo) 128 kbps
Improved CD quality MPEG (sound studio, stereo) 768 kbps

Table 1.2: Sound Quality Encoding Schemes and Throughputs

Based on these findings one can conclude that the throughput requirements for real-time,
high quality sound transmission are relatively high (although sophisticated compression
mechanisms are used) compared to the throughput users experience in the public Internet.
This is, in part, why current research in the area of real-time audio streaming focuses on
low-bandwidth voice data.

1.3.1.2 Delay

The transit delay requirements for the transmission of continuous audio streams are highly
dependent on the multimedia application. In the case of pure live audio data distribution
(uni-directional transmission), long delays are usually tolerable. Large receiver buffers can
be deployed to compensate for high delay variations and irregularities in the network and
end systems. This of course is not the case for interactive applications such as Internet
Telephony or live audio conferencing systems. Interactivity, especially human conversation,
demands high responsiveness. The two-way or round-trip delay of the streaming application
is crucial.

The impression of “real-time” which users experience from responsive applications is sub-
jective. User studies for the ITU indicate that most telephony users perceive communi-
cation with round-trip delays greater than approximately 300 ms as simplex connections

1.3. APPLICATION QOS REQUIREMENTS 19

rather than duplex communication. However, depending on the application and user per-
ception, more tolerant users are often satisfied with delays of 300-800 ms [G.196]. Conver-
sations with a round-trip delay close to a second cannot easily use “normal” social protocols
for talker selection.

For duplex audio transmission, a technical difficulty lies in the echo that may be audible
if the end-to-end round-trip delay exceeds a certain threshold, and no particular measure
(such as the use of directional microphones and speakers, or echo canceling systems) is
seen to limit the echo. The ITU has defined 24 ms as the upper limit of one-way transit
delay for which echo canceling is not required.

1.3.1.3 Delay Jitter

Streaming of live audio is probably the most sensitive media type to delay variations. If
packets carrying the audio information arrive with a wide distribution of transit delays, the
receiving system needs to wait a sufficient time, called buffering or playout delay, before
playing back the data in order to ensure that most of the delayed blocks arrive in time.
Otherwise, a significant number of packets would arrive late. The gaps in the signal, caused
by late and lost packets, result in audible artifacts. This results in sound quality that is
intolerable.

Receiver buffering mechanisms temporarily store incoming packets in a so called buffer
until their playout point. The packets can then be played out smoothly without gaps
in the signal. Buffering mechanisms are also often referred to as delay compensation.
Although delay compensation clearly has advantages, there are two possible drawbacks of
this technique. First, an additional delay is introduced at the receiver. Second, sufficient
buffer memory must be available at the receiving system.

The process of determining the best buffering or playout delay is commonly called Playout
Delay Estimation (see section 3.1.4). It is dictated mainly by the following two parameters:

• The maximum overall delay that the application or the end user can tolerate.

In the case of interactive audio streaming, the maximum total delay is very restrictive.
Since a large portion of the delay budget is consumed by network transmission and
the processing in the end systems, additional delay introduced by network jitter and
scheduling irregularities in the end systems should be minimized.

• The buffering capabilities of the receiving system.

Even though the total delay might not be the limiting factor in all cases, the available
memory in the end system, especially in small or mobile end devices, restricts the
buffering delay. A delay of even a few seconds of high quality audio, for example,
would require a considerable buffer size.

20 CHAPTER 1. INTRODUCTION

1.3.1.4 Reliability

It is important to note that bit errors usually lead to dropped packets within Internet
communication. Therefore, only packet loss needs to be considered when examining the
reliability requirements of Internet media streaming applications. Bit errors are dealt with
on the transport layer; user applications need not consider them.

It is commonly recognized that humans are far more sensitive to erroneous audio trans-
mission than to defective video transfer. This is due to the different processing of audio
and visual information. Thus, QoS requirements for audio with respect to error liability
are very strict. The maximum error rate tolerable within audio communications is highly
dependent on the application4, the encoding scheme5, and the sensitivity of the individual
human user.

One study [Jay80] concludes that no more than 5% of erroneous audio data can be tolerated
in human conversations. Another study [Sch97] discovered that a packet loss rate of 1% is
clearly noticeable as a crackle. Up to 13% of packet loss of voice information still allows
words to be understood, but there are many crackles in the signal. Loss rates of 20%
still allow sentences to be understood. This is due to the redundancy in human language.
Non-redundant information like numbers get lost. Also, speakers with a (strong) accent
are very hard to understand. At 25% packet loss only parts of phrases are understandable.
Higher packet loss rates make audio voice transmissions for most people totally useless.

Packet losses within real-time audio streaming cannot simply be resolved by means of re-
transmission, since the end-to-end delay constraints would be greatly exceeded. If only few
consecutive packets are lost, techniques that replay the last frame(s) rather than playing
no sound mask the problem. It should be noted that gaps in the signal are immediately
recognized by the listener (except during silent periods). Other techniques suggest ex-
trapolating the missing information by determining an approximate value from previously
received frames. A similar technique interpolates missing block based on the predecessor
and the successor blocks [T+96].

Both extrapolation and interpolation are called predictive techniques, as their approach is
to provide estimates for missing information. Deploying the principle of these predictive
techniques for transmission error recovery is often referred to as error concealment.

Summarizing, one can conclude that interactive real-time audio streaming has very strict
end-to-end QoS requirements, especially with respect to the end-to-end delay, jitter and
reliability. The throughput requirements are less demanding.

4For example, audio artefacts in high quality music are usually less tolerable than erroneous voice
information.

5It should be noted that some encoding techniques generate packets of different priority and thus it
depends which packets are lost; others add redundancy to the packets which enables recovery from most
packet losses.

1.3. APPLICATION QOS REQUIREMENTS 21

1.3.2 QoS Requirements for Live Video Streaming

This section introduces the QoS requirements for live video streaming applications. Since
this thesis focuses mainly on the issues of packet audio, only a brief discussion of video
issues is presented. The aim is to highlight the main differences between audio and video
in the context of real-time media streaming.

The following four classes of video quality are examined in detail:

Broadcast Quality TV: There are currently only two standards, either NTSC, which spec-
ifies a frame rate of 30 fps and a vertical resolution of 525 lines with 858 samples per
line, or PAL/SECAM, which defines 25 fps and 625 lines of vertical resolution with
864 samples per line.

VCR Quality TV: This quality is observed when recording a TV broadcast on a regular
consumer VCR of VHS quality. The resulting resolution is about half PAL/SECAM
broadcast-quality TV.

Video Conferencing: Low-bandwidth video conferencing operates at about 128 kbps. Two
aggregated basic ISDN channels are sufficient to provide the necessary bandwidth.
The H.261 compression standard [H.293] has been developed to support video tele-
phony. This encoding scheme is particularly suitable for video sequences with little
movement (for example, head and shoulder video conferencing). Moving pictures
can be encoded at rates of p× 64 kbps, where p is in the range 1 to 30. The picture
scanning format Common Intermediate Format (CIF), defined in relation to H.261,
specifies a resolution of 352 pixels per line and 288 lines per frame. To achieve data
rates with less than 128 kbps, the frame rate is limited to 5-10 fps. H.263, a new
standard which has recently emerged, is intended for very low bit-rates (< 64 kbps).
It is derived from optimizations of the H.261 and MPEG-1 coding algorithms.

Animated Images: A film of single compressed Images (usually GIF [Ger87] or JPEG
[JTC93] encoded) is transmitted. The quality of the video depends on the size and
colors of the single images and on the available bandwidth on the network path. This
video quality class adapts the throughput requirements to the currently available
end-to-end bandwidth. It varies from a frame rate of 0 to the maximum frame rate
supported. The throughput requirements can be further reduced by sending only the
differences between subsequent images rather than the whole picture [Ger87].

1.3.2.1 Throughput

The throughput required for real-time, uncompressed broadcast quality TV results from
the number of samples per line given in the definition, which corresponds to the samples for
the luminance, plus 360 samples, which are required for the color difference irrespective of

22 CHAPTER 1. INTRODUCTION

the original analog signal. The number of active lines per frame is lower than the number
of lines given in the definition. Only 484 active lines are used in NTSC-compatible mode;
576 lines in PAL/SECAM-compatible mode.

Compressed broadcast quality TV requires as little as 6 Mbps. Existing implementations
of the MPEG-2 compression standard operate at this rate. It is expected to reduce the
bit rate to 2-3 Mbps (4 Mbps) for quality equivalent to that of NTSC (PAL/SECAM)
broadcast. Compression schemes such as MPEG-1 or DVI (Digital Video Interactive)
provide off-line compression to 1.2 Mbps for quality similar to VCR quality. The bit rate
of 128 kbps, required for CIF encoded video conferencing quality, is specifically designed
for low-bandwidth links. Work is underway by the MPEG group to define schemes that
can provide video conferencing quality with as little as 32 kbps or even 4.8 kbps within
the new MPEG-4 standard.

The throughput requirement for animated images depends on the image size, the image
encoding, and the rate at which the pictures are captured. Video systems, like the We-
bVideo tool [FW97] developed at University of Ulm (Germany), adapt the frame rate
depending on the currently available bandwidth along the network path. Common data
rates experienced in today’s public Internet are in the range of 0-64 kbps.

Table 1.3 summarizes the throughput requirements of various types of compressed digital
video.

Video Quality Encoding Technique (Standard) Bit Rate

Broadcast Quality TV MPEG-2 3-6 Mbps
VCR Quality TV MPEG-1, DVI 1.2 Mbps
Video Conferencing H.261 (CIF) 128 kbps

H.263 < 64 kbps
MPEG-4 32, 4.8 kbps

Animated Images JPEG, GIFF, DIFF-GIF 0-64 kbps

Table 1.3: Video Quality Encoding Schemes and Throughputs

From this brief overview of different quality video encodings, it is clear that the throughput
requirements of video streaming are significantly higher than the ones of audio streaming.
Furthermore, a comparison of these throughput requirements with the throughputs that
are experienced in the Internet today clearly shows that high quality video cannot be
transmitted on the public network. Low-bandwidth video of conferencing quality is already
hard to manage, since end-to-end bandwidth of 128 kbps for a single application already
requires good end-to-end connectivity. Modem connections are not sufficient. Thus, low-
bandwidth video encoding based on animated images with flexible bandwidth requirements
is currently favorable for Internet real-time video streaming.

1.3. APPLICATION QOS REQUIREMENTS 23

1.3.2.2 Delay

The delay requirements of video streams depend on whether the video stream is transmitted
simultaneously with an audio stream for synchronous presentation, or not. In the case of
synchronous playback of both media types, the requirements on the transit delay and the
jitter are usually dictated by the audio. High quality video and audio like broadcast or
VCR quality TV demands coarse synchronization such as “lip-synchronization”. Thus, the
delay variation between the audio and video playout should be less then 50-100 ms [T+96].

Low-bandwidth quality video with only a few frames per seconds requires only rough
synchronization if audio is available. The delay variation between the audio and video
should then be less than about 400 ms [T+96].

If only video is presented (without audio), the delay depends entirely on the application.
If the application is interactive and response time is important, the delay, of course, should
be as little as possible. The delay demands of interactive, real-time video are similar to
the ones of audio.

Video playback applications without interaction such as VCR type video playback tools
have only very little demands on the delay. Several seconds are usually easily tolerable.

1.3.2.3 Delay Jitter

As long as the video and audio is synchronized, the jitter requirements of the video trans-
mission are dictated by the audio. Otherwise, small or moderate delay variations are still
tolerable. While in the case of audio streaming small delay variations result immediately
in spurious sound quality (if no delay compensation is deployed), varying playout delays
of video frames are less disturbing. This is due to the fact that human sound recognition
is more sensitive to irregularities in the signal than the eye.

The amount of tolerable jitter mainly depends on the video quality and in particular the
frame rate. In the case of high quality video with frame rates of 25-30 fps, jitter above 50
ms will be recognized in most cases. On the other hand, if low-bandwidth video quality
with 5-10 fps is used, jitter of about 100 ms will hardly disturb the user.

If the jitter experienced by video packets exceeds the tolerable limit, delay compensation
mechanisms, as described in the case of audio, must be deployed. If synchronization is
required, the playout delay estimations of the audio and video must be adjusted. The
playout point of the video should not vary from the audio by more than 50-100 ms.

1.3.2.4 Reliability

As mentioned earlier, humans are less sensitive to erroneous video transmission than to
defective audio transfer. The reason is simply the different processing of audio and visual

24 CHAPTER 1. INTRODUCTION

information. Therefore, the QoS requirements for video with respect to error liability are
less strict than for audio.

The maximum error rate tolerable within video streaming is highly dependent on the
application. Missing frames usually result in jerky movement. The degree of disturbance
depends on the video quality level and especially the frame rate. Motion interruption in
high quality video is immediately recognized, whereas in low-bandwidth video a missing
frame might not be noticed.

Unlike the case of audio playback, a missing frame does not lead to a gap in the signal.
The user still perceives an image, even if it is an old image. It is only the motion which
is intermittent, whereas in the case of audio playback the signal is completely missing
for a period of time. As in the case of audio transmission, predictive error concealment
mechanisms such as extrapolation and interpolation are often deployed in order to reduce
the problem of frame losses.

Since the human eye acts as an integrator of visual information rather than as a differentia-
tor like the ear, gaps in the signal are not as noticeable. Thus, erroneous video transmission
and in particular packet loss is more tolerable than defective audio transfer.

Summarizing can be stated that video streaming requires significantly more available band-
width than audio, whereas the end-to-end QoS requirements with respect to jitter and
reliability are less strict and more scalable than for audio. However, if the video signal is
to be synchronized with the audio, the stronger requirements of audio streaming usually
dictate the transmission characteristics of the video.

1.4 Summary

The introductory chapter provides an overview of related work, with respect to real-time
audio streaming applications, which are currently carried out within Internet research.
Further related work is presented throughout the thesis where appropriate.

A general classification of Internet traffic is presented, placing real-time streaming appli-
cations and media traffic within the context of general Internet applications and traffic
characteristics. Moreover, the specific concerns and problems of real-time streaming are
discussed in more detail.

Since the thesis emphasizes the QoS issues of real-time audio streaming, an in-depth intro-
duction of the QoS terminology is presented. The QoS parameters that play an important
role within Internet communication are: delay, jitter, throughput and reliability. The work
focuses especially on real-time streaming in the Internet. As a result, a discussion about
the QoS experienced in the public Internet is included. The results can be summarized as
follows:

1.4. SUMMARY 25

• Today’s Internet communication is based on the simple best-effort service model, and
thus, no explicit support for QoS is available yet.

• The end-to-end delay of a data stream is the accumulated delay through the entire
data flow pipeline including sender coding and packetization, network transmission,
reception and decoding.

• Network delay in the Internet is mainly a result of queuing and processing within
network routers. Link transmission delays are usually small.

• Jitter is caused either by the dynamic changes of queues in the network or by process
scheduling irregularities in end hosts and network routers.

• Unreliability in Internet communication is mainly expressed by the packet loss rate.
Packet loss is a result of routers discarding packets because of temporary congestion
or as a precaution in order to avoid congestion.

In order to provide a foundation for further discussions on QoS issues of real-time streaming,
the QoS requirements of media streaming applications, are presented. The important
results can be outlined as follows:

• The throughput requirements of video streaming are significantly higher than for
audio streaming.

• Humans are far more sensitive to erroneous audio transmission than to defective
video transfer.

• Interactive audio streaming demands very small end-to-end delays. Users usually
perceive communication with round-trip delays greater than 300 ms as simplex con-
nections.

• Live audio is highly sensitive to delay variations and hence demands delay compen-
sation at the receiver.

Conclusions:

1. Interactive audio streaming has very strict end-to-end QoS requirements, espe-
cially with respect to the end-to-end delay, jitter and reliability. The throughput
requirements are less demanding.

2. Video streaming requires significantly more bandwidth than audio. The end-to-
end QoS requirements with respect to jitter and reliability are less strict than for
audio. However, if the video signal needs to be synchronized with the audio, the
stronger requirements of audio streaming apply.

26 CHAPTER 1. INTRODUCTION

In the next chapter several protocols that play an important role in Internet multimedia
streaming are discussed. The structure is inspired by the OSI reference model [Tan96].
The chapter, therefore, groups and discusses the protocols following the OSI layering.
Chapter 3 introduces and discusses different approaches to improve the QoS for real-time
media streaming applications. It distinguishes between application layer techniques and
mechanisms that are provided on the network layer. In chapter 4 WebAudio, the real-
time audio streaming application which was implemented in the context of this thesis, is
introduced. The application architecture and implementation issues are discussed in detail.
Chapter 5 presents the results of various experiments accomplished with WebAudio. The
experiments can be grouped into those examining the proper operation of the application
in different networks environments, those exploring the resource reservation capabilities of
WebAudio, and those investigating the efficiency of various packet classification approaches.
Finally, chapter 6 summarizes and concludes the work. Further development work on
WebAudio and future research with respect to RSVP is described at the end of this chapter.

Chapter 2

Internet Multimedia Protocols

This section introduces most of the Internet communication protocols used by state-of-the-
art multimedia streaming applications. The protocols used in the real-time audio streaming
application developed in the context of this thesis are described in full detail.

An overview of current protocols is shown in Figure 2.1. It associates the individual pro-
tocols with their OSI layers. Unfortunately in many cases it is hard to classify streaming
protocols according to the OSI reference model. Many modern protocols have a rather
“vertical” design; or in other words, they cross the boundaries of one layer. An example is
RSVP (see section 2.3.1) which provides apart from the network level resource reservation
control also an application level interface. Applications initiate and control the reserva-
tion mechanism via the application level interface known as RSVP Application Protocol
Interface (RAPI).

Assigning upper-layer protocols (for example, HTTP, RTSP, etc.) to their OSI reference
model is even more difficult. Hence, the three top layers of the OSI model are merged into
one single layer here called Application Support Layer Protocols. This includes all protocols
above the Transport Layer which provide any kind of service to end-user applications.

Although it is difficult to place some protocols in the OSI reference model, they are de-
scribed and examined here according to the OSI layer model.

2.1 Network Layer Protocols

The main network level protocol used within today’s Internet is still IPv4, even though the
next generation Internet protocol IPv6 has already been specified in 1995 [DH95]. Since
IPv4 specification in 1981 [Pos81], IPv4 has undoubtedly evolved to be the most widely
deployed network protocol ever.

The Internet protocol is designed for use in interconnected systems of packet-switched
data communication networks. Its function or purpose is to move datagrams through an

27

28 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

HTTPRTSP

Transport Layer

Support Layer

Application

MBoneUDP

Network Layer

IPv6

Resource Reservation

DiffServ

RTP/UDP

IntServQoS Support

SDP

TCP

RSVP

IPv4

RTCP

YESSIR

Figure 2.1: Internet Multimedia Protocol Stack (related protocols or protocols with similar
functionalities have the same shading)

interconnected set of networks. This is done by passing the datagrams from one Internet
module (network element) to another until the destination is reached. The selection of
the transmission path and the subsequent forwarding of datagrams along this path is
called routing. The datagrams are routed from one Internet module to another based
on the interpretation of the Internet address in the datagram. According to the Internet
communication model, datagrams (or packets) are treated as independent entities and, as
far as the network subsystem is concerned, are unrelated to each other. The Internet does
not support connections or logical or virtual circuits. End-to-end connections have to be
emulated at a higher layer (for example, the transport layer).

IPv4 serves as the network layer protocol for the well known Transport Control Protocol
(TCP) (see section 2.2.2) and User Datagram Protocol (UDP) (see section 2.2.1) that are
used within all of today’s Internet application (for example, HTTP, Email, FTP, Telnet,
etc.)

2.1. NETWORK LAYER PROTOCOLS 29

2.1.1 Internet Protocol version 6 (IPv6)

The next generation Internet Protocol version 6 (IPv6), specified in RFC 1883 [DH95], was
designed as a direct successor to IPv4 1.

The concern about running short of Internet addresses was the main initial drive to de-
velop a next generation Internet protocol with a much larger address space. Based on
the exponential growth of the Internet in recent years, experts predicted that the Internet
runs out of IP addresses within the next 20 years [Hui97]. Since every network element
requires an unique IP address, the maximum number of elements is limited to about 4
billion. This upper bound results from the IPv4 address length of 32 bit which stretches
an address space of 232 addresses. Even though this number is sufficient to provide an
unique IP address to about 2/3 of the world’s population, the fact that the address space
is hierarchically partitioned2 in groups, accounts for inefficient allocation. Practical obser-
vations in the Internet have shown that the address allocation efficiency is less than 30%
[Hui97].

The IPv6 designers made arrangements to smoothly migrate from IPv4 to IPv6. They
designed the new protocol such that both versions can coexist simultaneously. The Version
field (see Figure 2.2) allows network elements to quickly identify the Internet protocol of
a packet.

Since the version 1 specification of IPv6 [DH95] was released, the IPv6 header format has
already undergone several changes. According to the latest draft release of the IPWG
[DH98], the IPv6 header is defined as presented in Figure 2.2.

The important changes from IPv4 to IPv6 fall primarily into the following categories: ex-
panded addressing, header format simplification and an efficient extension (options) header
mechanism, multicast and anycast capabilities to support new styles of communication, and
new security capabilities.

2.1.1.1 Expanded Addressing Scheme

As shown in Figure 2.2, IPv6 increases the IP address size from 32 bits to 128 bits3 to
augment the levels of addressing hierarchy and the overall number of addressable network
nodes.

The 128-bit IPv6 addresses are written as eight 16-bit integers separated by colons. Each
integer is represented by four hexadecimal digits. A set of consecutive null 16-bit numbers

1The jump from version 4 to version 6 is rooted in the fact that version 5 had been allocated to ST, an
experimental “stream” protocol designed to carry real-time services in parallel with IP.

2Hierarchical addressing is required to maintain efficient routing tables and achieve fast routing within
the network.

3This address space, for example, could provide sufficient addresses to address every single byte of
memory currently available on earth (without reference).

30 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

.

0 8 3116 24

Source Address (128 bits)

Destination Address (128 bits)

Payload Length Next Header Hop Limit

Flow Label (24 bits)Traffic ClassVersion

Figure 2.2: The IPv6 Protocol Header

can simply be replaced by two colons. The last 32 bits can be presented in dot decimal
form.

The following example shows three typical forms of textual representations of the same
IPv6 unicast address:

1080:0:0:0:8:800:200C:417A
1080::8:800:200C:417A
1080::8:800:32.12:65.10

The address size and structure enables also automatic address configurations for network
nodes. A node’s network address (64 bits) concatenated with the device’s unique MAC
address (converted to a standard 64 bit EUI-64 address) is a simple mechanism to create
a unique IP address.

IPv6 addresses are assigned to individual network interfaces rather than to a corresponding
node. Single interfaces may have assigned multiple IPv6 addresses of any address type,
namely unicast, anycast or multicast.

The huge address space is also used to improve multicast routing by adding a Scope field to
multicast addresses (see section 2.1.1.3). Furthermore, a new address type, called anycast
address, has been introduced in IPv6 (see also section 2.1.1.3). On the other hand, IPv6
does not provide broadcast addresses anymore. Broadcast is simply superseded by means
of multicast.

2.1. NETWORK LAYER PROTOCOLS 31

2.1.1.2 Header Format Simplification and Header Extensions

According to Figure 2.2, the IPv6 header compromises only eight header fields. Some
IPv4 header fields, such as the Header Length, Flags, Fragment Offset, Header Checksum,
Options, and Identification, have been dropped or made optional to reduce the common-
case processing cost of packets and to limit the overhead of the IPv6 header.

Instead of using the IPv4 Option field [Pos81], IPv6 encodes optional network-layer in-
formation in special headers, called Extension Headers. They are placed in between the
IPv6 header and the transport-layer header. A small number of such extension headers is
already defined, each of which is identified by a distinct Next Header value. IPv6 packets
may carry zero, one, or more extension headers. The next header field points to the next
extension header in the chain. See Figure 2.3 as an illustration.

Routing

IPv6 Header

Next Header

Next Header

Next Header

IPv6 Header Routing Header

IPv6 Header

Next Header

Routing Header

Next Header Next Header

FragmentRouting

TCP

TCP

TCP

Fragment Hdr
TCP Header + Payload

TCP Header + Payload

TCP Header + Payload

Figure 2.3: The IPv6 Extension Header Mechanism

The extension headers must have a size equal to an integer multiple of 8 octets. This
guarantees that all subsequent extension headers retain a 8-octet alignment, and thus
simplifies and speeds up the header processing.

If more than one extension header is used in the same packet, they should appear in the
order shown here:

IPv6 header
Hop-by-Hop Options header
Destination Options header4

Routing header

4Options to be processed by the first destination of the Destination Address field plus subsequent
destinations listed in the Routing header.

32 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

Fragment header
Authentication header
Encapsulating Security Payload header
Destination Options header5

Upper-layer header (i.e. TCP header, UDP header)

With the exception of the Destination Options header, each extension header should occur
at most once.

In order to enable efficient packet forwarding, extension headers must not be examined or
processed by any node along a packet’s delivery path, except when the packet reaches its
destination. There is, however, one exception. This is the Hop-by-Hop Option header that
carries information that must be processed by every network node passed by the packet.
Hence, if this extension header is used, it must immediately follow the IPv6 header to
prevent nodes from having to search for this information.

Furthermore, extension headers must be processed strictly in the order they appear in the
packet, since the contents and semantics of each extension header determines whether or
not the following header must be examined.

2.1.1.3 Anycast and Multicast

Anycast is a new feature6 of IPv6. The principle of anycast is very simple. Sending
a packet to an anycast address delivers the packet to any, but only one, of a group of
network interfaces. IPv6 anycast addresses have the property that a packet sent to such
an address is routed to the “nearest” interface associated with that address, according to
the routing protocol’s measure of distance.

Moreover, the designers of IPv6 took advantage of the deployment of a new protocol
to make sure that multicast is available on all IPv6 capable network nodes. In IPv4
multicast (sending packets to all members of the multicast group) was achieved by means
of a virtual network on top of UDP/IP which is known as the MBone [Eri93]. MBone
routers simply duplicate data packets if they have to forward them on different output
ports; otherwise only one packet is forwarded. By defining an address format for IPv6
multicast addresses and defining multicast routing as mandatory, they force multicast to
be a native communication mode in IPv6.

IPv6 multicast addresses can be interpreted as identifiers for a group of nodes. Nodes may
simultaneously belong to a number of multicast groups. The format of IPv6 multicast
addresses is shown in Figure 2.4.

5For options that must only be processed by the final destination of the packet.
6It was still a research project when the IPv6 specifications were written.

2.1. NETWORK LAYER PROTOCOLS 33

Scope

16 240

Flags

Group ID (112 bits)

1

8

1 1 1 1111

31

Figure 2.4: The IPv6 Multicast Address Format

The Flags bit set is currently only used to indicate “well-known” (permanently-assigned)
multicast addresses or “transient” (non-permanently assigned) addresses. The Scope field
is used to limit the scope of the multicast group. Currently defined scopes are node-
local, link-local, site-local, organization-local, and global. Special multicast addresses are
assigned to simulate link-local broadcast (all local node addresses) and router broadcast
(all local router addresses).

2.1.1.4 Security Capabilities

In recent times security has become an important issue in the Internet. Today most
organizations secure their data and privacy simply by barricading their networks behind
firewalls. This shows that there is a great demand for security in the Internet. As a result,
the designers of IPv6 have incorporated security features known as IP-level authentication
and encryption.

Supporting security as native mode on the network level is a transparent means to add
secure communication to all applications. The inclusion of security mechanisms as an
integral part of IPv6 promotes fast integration and distribution of security within the
Internet.

A more detailed description of the Internet security architecture is provided in [Atk95c].
The use of the extension headers for authentication and encryption is specified in [Atk95a,
Atk95b].

2.1.2 Enhancements for Live Media Streaming

2.1.2.1 IPv6 and Performance

The IPWG has heavily learned from past experiences with Internet multimedia applications
in IPv4. They avoided several of the performance bottlenecks which existed in the design
of IPv4. The main improvements are discussed here.

34 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

The IPv4 Header Checksum field has been dropped. Since some IPv4 header, such as
for example the Time To Live (TTL), change at each intermediate network node, the
header checksum must be verified and recomputed at each node. Eliminating this control
mechanism is definitely a wise choice, especially, since current transport protocols, namely
UDP and TCP, have their own checksum validation mechanisms. Dropping the header
checksum of the network protocol reduces the per-packet processing time in intermediate
routers. Considering that packets pass several hops until they reach the destination, this
simplification may have a significant impact on the overall end-to-end transmission delay.
However, in the case of data transmission in unreliable networks, such as wireless networks,
the lack of network level bit error detection might cause unnecessary delivery of erroneous
packets.

Removing the Option field of the IPv4 header and introducing the IPv6 extension header
mechanism instead, also has an impact on the average packet processing time. In IPv4 all
packets with a Header Length greater than five 32 bit words, contain options that need to
be processed in a special manner by intermediate nodes. Clearly an identifier that tells
whether the options have to be processed by each node or only at the destination is missing.
The IPv6 header, on the other hand, is of fixed size. It definitely simplifies and speeds up
the header processing. The “ordered” extension header list of IPv6 forces routers only to
check the “options” which are destined for intermediate nodes. Extension headers which
are intended for the end nodes can be completely ignored.

Preventing IPv6 from fragmenting packets under normal operation not only simplifies the
IPv6 header — the IPv4 header fields Identification, Flags, and Fragment Offset become
obsolete — but also improves the packet processing performance in network routers. Frag-
mentation not only increases the overhead associated with the fragmented packet due to
the replication of the header in each fragment, but also demands additional processing
at the end nodes for fragmentation and reassembly. IPv6 uses the Path MTU Discov-
ery [MD90] mechanism to find the Maximum Transmission Unit (MTU) of a link before
starting the transmission. Knowing the path MTU allows the IPv6 implementations of
the end systems to perform necessary packet fragmentation. The processing burden of
packet fragmentation is therefore shifted from the network routers, where high load might
result in congestion, to the end systems. Moreover, if applications know the path MTU,
they can avoid unnecessary fragmentation by applying proper application level framing. If
packet sizes larger than the path MTU are absolutely required, IPv6 provides the Fragment
header to indicate fragmentation and ensure proper reassembly at the receiver. However,
fragmentation is strongly discouraged in cases where applications are able to adjust their
packets to fit the path MTU.

2.1.2.2 IPv6 and QoS

Although IPv6 enhances the current Internet protocol with respect to QoS support and
real-time media streaming, the lack of QoS support was never a reason that pushed the

2.1. NETWORK LAYER PROTOCOLS 35

development of a new Internet protocol. The growing demand for QoS support in the
Internet led the IPv6 developers to introduced the following features to facilitate network
QoS control.

Traffic Class

According to the version 1 of the IPv6 specification, the 8 bit Type of Service (ToS) field
of IPv4 was simply transformed into a 4 bit Priority field. It was intended to enable IPv6
applications to mark the delivery priority of packets relative to other packets of the same
source.

However, three reasons led the IPng working group to revise the Priority header. First, it
is difficult to arrange fair or useful assignments of packet priorities. Note, any application
performs better when using a higher priority class for its traffic. Second, it has been
demonstrated that relative priorities can cause open loop transmission problems [Hui97].
Third, more control bits to improve the congestion avoidance algorithm of RED were
needed (see section 2.2.2). As a result, the Priority field was transformed into an 8 bit
Traffic Class field. The additional 4 bits were gained by reducing the Flow Label field to
20 bits [DH98].

The IPv6 Traffic Class field is used by intermediate network nodes to identify the different
traffic or priority classes of passing packets.

It is still not entirely clear how this field will be used in practice. The most promising
approach suggests to use the bits as in IPv4 ToS and/or Service Marking (see section
3.2.2) to provide various forms of “differentiated service” for IP packets, as an alternative
to establishing explicit flows. Current experiments with IPv4 and DiffServ (see section
3.2.3) will hopefully lead to agreement on which types of traffic classification are most
useful for IP packets.

Flow Label

When the designers of IPv6 included the Flow Label header field, they were convinced that
a flow identifier was a promising extension with respect to network QoS although its usage
was only vaguely determined.

According to the IPv6 specification [DH95], the flow label field might be used by the
source to label packets that require special handling by intervening IPv6 routers, such as
non-default QoS or real-time service. In order to classify packets belonging to the same
flow, they are labeled with the same pre-defined flow label value. Therefore, the definition
of a flow comes implicitly from the definition of the flow label itself. A Flow is defined
as a sequence of packets sent from a particular source to the same (unicast or multicast)
destination.

36 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

The inclusion of the Flow Label field provides the IP protocol with the concept of a Flow.
As a result, network elements are now capable of classifying packets based on IP semantics
alone. This allows efficient mapping of packet to their flows and hence to their flow specific
processing policy (for example, QoS requirements or Class of Service).

Flow labels are assigned to flows by the source or sending nodes in an unique manner.
Note, a source can never have more than one flow with the same flow label at a given
time7. New flow labels must be chosen (pseudo-) randomly and uniformly.

The flow label properties are ideal for proper and efficient packet classification. In a recent
publication at the Spie East ’98 conference [S+98a], we present a detailed discussion of
the impact of the IPv6 flow label on packet classification, and in particular classification
within the IntServ architecture (see section 3.2.5) and RSVP (see section 2.3.1). Further
discussion of this findings is presented in section 5.3.

2.1.2.3 IPv6 and Multicast

Multicasting is an excellent mechanism for data distribution, especially for group commu-
nication. It can generally reduce network utilization and the processing load on the sender
node. As a result, many of today’s multimedia streaming applications use multicast to dis-
tribute their media streams to all members in the group. Several multimedia applications
have been designed to run on the MBone and became commonly known as the MBone
Tools 8.

In IPv4 networks multicast communication is, however, only offered by the virtual network
called MBone [Eri93]. Since IPv4 multicast implementation have to uses tunnels between
the individual multicast routers, multiple copies of encapsulated multicast packets are
transmitted on the same links. The transmission of multiple replicas of multicast packets
on the same link results from the fact that often several tunnels are configured over a single
physical link.

IPv6, in contrast, supports multicast as a native communication mode, and hence, does not
rely on MBone-like tunnels. It is precisely by avoiding the use of tunnels for multicasting
that IPv6 improves the performance of multicasting. Yet, this improvement will only be
noticeable when a significant number of Internet routers support IPv6. Until then tunneling
will remain.

The great advantage of having multicast fully integrated in the Internet protocol is that
over time the multicast network successively increases by the number of IPv6 network
nodes. Thus, eventually multicasting becomes a standard feature of the Internet (rather
than being treated as a optional add-on as it is today).

7A discussion on how to ensure unique local flow labels is presented in [DH98].
8Examples are vat [JMat], vic [MJ95], rat [H+95], NV (Network Video), WB (White Board), etc.

2.1. NETWORK LAYER PROTOCOLS 37

2.1.3 Summary

The main differences between IPv4 and IPv6 are summarized in Table 2.1.

Criterion IPv4 IPv6

Address Size 32 bits 128 bits
Header Size 20-60 Bytes 40 Bytes (fixed)
Options 0-40 Bytes extension header

header field mechanism
Checksum + -
Multicast virtual (MBone) native
Anycast - +
Flow Support (Flow Label) - +
Fragmentation by default on demand
Security encapsulation native

Table 2.1: IPv4 vs. IPv6: What are the differences?

Summarizing from this section, one can conclude that IPv6 mainly contributes to the
Internet protocol in 4 directions: first, it fixes the address problem; second, IPv6 adopts
simpler and more efficient versions of IPv4 mechanisms which degraded the packet process-
ing performance in network routers (i.e. fragmentation, checksum, header size); third, it
integrates successful IPv4 add-ons (i.e. multicast, security) as native parts to the protocol;
and fourth, it introduces the new concepts of anycast and flows, to the Internet protocol.

Finally, three noteworthy issues regarding the extensions of IPv6 are pointed out here:

First, although the flexibility and extensibility of the IPv6 extension header mechanisms is
highly acknowledged, it arises a problem if network routers rely on information of the IP
payload (for example, the transport protocol port). If multiple extension headers are in use,
the processing cost of skipping the headers to get to the payload increases significantly (it
means, searching a linked-list) 9. One could argue that IP routers are supposed to operate
on the network level only, and hence should not rely on payload content. Nonetheless,
mechanisms like packet classification (as currently deployed within IntServ/RSVP), for
example, rely on transport layer information.

Second, even though IPv6 introduces the concept of a Flow, it does no fully make use of the
concept for QoS support within multimedia communication. QoS support and in partic-
ular resource reservation mechanisms are closely linked to the concept of a “connection”.
Therefore, the ability of using the IPv6 flow label to “pin” an end-to-end “connection”
(i.e. the route) for a data flow would be advantageous. However, since packets in IPv6 are
routed only according to their destination address (or routing header extension), packets

9Note, the IPv6 header does not include a header size field anymore.

38 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

of the same flow may be delivered via a different path. The lack of true flow routing (or
switching) capabilities has the danger that applications could lose their QoS guarantees
due to a route change.

Third, the fact that IPv4 and IPv6 have completely different headers formats makes them
unable to inter-operate. Therefore, during the transition, each IPv6 router requires a dual
stack architecture (IPv4 stack must also be provided). In addition, IPv6 traffic that needs
to traverse a network segment only capable of handling IPv4 has to be tunneled. This,
of course, results in bad performance due to the processing overhead and the increased
network load caused by packet replicas.

2.2 Transport Layer Protocols

2.2.1 User Datagram Protocol

The User Datagram Protocol (UDP), defined in 1980 [Pos80a], implements a datagram
based mode of packet-switched communication for the Internet. The transport protocol
assumes IP to be the underlying network protocol.

UDP offers to applications a simple mechanism to transmit messages between processes
with a minimum protocol. It is known to be a “transaction-oriented” protocol without
guarantee for packet delivery, protection against duplication and promises for in-order
delivery. A checksum mechanism is deployed to identify bit errors. Thus, it guarantees
service with bit-error free packet transmission.

Since UDP is one of the simplest transport protocol one can think of, its protocol header
is as simple as shown in Figure 2.5.

.

0 8 3116 24

Destination PortSource Port

ChecksumLength

.

Data Octets (variable length)

Figure 2.5: The UDP Protocol Header

To allow multiple processes on the same host simultaneous use of UDP-based communica-
tion, UDP provides a set of addresses per host, called Ports. Ports are defined access points
for data communication. The concatenation of ports and the network and host addresses

2.2. TRANSPORT LAYER PROTOCOLS 39

of the IP layer, compose a socket. The binding of ports to processes is handled indepen-
dently by each host. However, experiences show that it is useful to attach frequently used
processes (for example, WWW, FTP, Telnet) to fixed sockets. These services can then be
accessed through their “well-known” ports.

The Source and Destination Port of the UDP header specify the socket ports of the end-user
processes sending and receiving the packets. The destination port is a means to demultiplex
multiple data streams at the receiver. The source port is not required; if not specified, a
value of zero is inserted. The Checksum is the 1’s complement of the 1’s complement sum
of the payload data, the UDP header and a pseudo IP header (see [Pos80a] for further
details). The Length simply specifies the total number of octets in the user datagram.

2.2.2 Transport Control Protocol

The Transmission Control Protocol (TCP) [Pos80c] is known as a reliable host-to-host
protocol between hosts in IP networks, such as the Internet. It offers connection-oriented,
end-to-end, inter-process communication between any pair of hosts connected to the Inter-
net. TCP makes only very few assumption on the network protocol. It provides reliability,
even on top of the unreliable datagram services offered by IP. Interfacing both, the appli-
cation process and the lower level network protocol, makes TCP a general “inter-process”
communication protocol for multi-network environments. Its main design features are ex-
amined and discussed here:

Data Transfer: TCP is intended to transfer streams of data octets in a bi-directional
manner between pairs of hosts. The data stream is transmitted in segments (or
packets) including a variable number of data octets. In TCP streaming mode, the
TCP stacks on both hosts decide (see TCP flow control) when to block and forward
data at their own convenience. TCP can also be operated in record mode. This mode,
however, is hardly used anymore.

Reliability: Since TCP guarantees reliable data transmission, it must recover from data
which is damaged, lost, duplicated, or delivered out of order by the underlying net-
work protocol. This is achieved by assigning a sequence number to every octet trans-
mitted. The Sequence Number field of the TCP header (see Figure 2.6) identifies
the first data octet in the packet. Sending hosts wait for a positive acknowledgment
(ACK) from the receiver after a certain amount of data octets is sent. If the ACK,
indicating the successful receipt of data up to the Acknowledgment Number, is not
received within a timeout interval, the sender starts retransmission. The sequence
numbers are used at the receiver to correctly order segments which may be received
out-of-order and to eliminate duplicates. Bit-errors in the payload data are detected
by means of the Checksum transmit as part of the protocol header.

40 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

.

0 8 3116 24

.

Source Port Destination Port

Sequence Number

Acknowledgement Number

DataOffset Reserved Window

Checksum Urgent Pointer

Options Padding

Payload Data (variable length)

Control Bits

Figure 2.6: The TCP Protocol Header

Flow Control: TCP uses the well known sliding window algorithm as a flow control
mechanism. This is a means for the receiver to control the data rate transmitted by
the sender. TCP receivers simply return a “window” with every ACK indicating a
range of acceptable sequence numbers beyond the last segment (or packet) success-
fully received. The sliding window indicates an allowed number of data bytes that the
sender may transmit before receiving an acknowledgment for the first data segments.
After receipt of new ACK, the sender scrolls forward its transmission window, and
starts transmitting new data segments. If the sender does not receive an ACK within
the timeout period, it retransmits the data encompassed by the sliding window. This
process is repeated until the ACK arrives at the sender side.

Multiplexing: Like UDP (see section 2.2.1), TCP supports simultaneous data commu-
nication for many processes of a single host. The port concept is used to demultiplex
multiple data streams at a receiver. It provides a means to classify data packets
and pass them to their corresponding application processes. The tuple of the sender
and receiver sockets uniquely identifies a TCP connection between two application
processes.

Connections: A TCP connection encompasses the following state information: the end-
host sockets, sequence numbers, sliding window size. This “connection state” is
required to achieve flow control and the other mechanisms described above. The
TCP implementation of the processes that wish to communicate must first estab-
lish a connection (initialize the status information on each side). TCP supports a
passive and an active mode for connection establishment. A node in passive mode
listens on the socket, waiting to accept incoming connection requests rather than
attempting to initiate a connection. In order to establish a connection, at least one

2.2. TRANSPORT LAYER PROTOCOLS 41

of the partners must actively initiate the connection establishment. The active node
uniquely specifies the destination host and port of the communication partner. Since
connections are usually established between “unreliable” hosts and via “unreliable”
networks, such as the Internet, a handshake mechanism with clock-based sequence
numbers is used to avoid erroneous initialization of connections. This mechanism is
commonly known as three-way handshake [DS78].

In Internet communication TCP has been very successfully used for many years. Most
applications (for example, WWW and Email) and application support layer protocols (for
example, HTTP, FTP, RTSP and SIP) rely on TCP as their transport protocol. However,
experience with TCP has shown that early implementations had some drawbacks if used
in large-scale environments, such as the Internet. As a result, most modern implementa-
tions of TCP contain four intertwined algorithms that improve fault tolerance, resource
utilization, efficiency, and scalability [Ste97].

Slow Start Algorithm: According to the TCP version 1 specification [Pos80c], TCP
starts communicating by sending multiple packets into the network, up to the window
size advertised by the receiver. As a result, intermediate routers must queue packets if
there are low-bandwidth links between the sender and the receiver. Since TCP is used
within the Internet where thousands of TCP connections are used simultaneously,
routers, particularly in the core network, can quickly run out of queue space, and
hence, have to drop packets which then have to be retransmitted. This naive flow
control approach can reduce the throughput of TCP connections drastically [Pos80b].
The slow start algorithm resolves this problem by adapting the rate at which new
packets are injected into the network to the rate at which the receiver returns the
ACKs.

Congestion Avoidance: The congestion avoidance algorithm is the counterpart of the
slow start algorithm. The algorithm reduces the packet transmission rate as soon as
it detects network congestion. Congestion is assumed if the packet loss rate increases
10. After the transmission rate is reduce, congestion avoidance then invoke the slow
start algorithm to adjust the maximal throughput again. Thus, both algorithms can
be deemed to be complementary counterparts.

Fast Retransmission: The idea of the fast retransmission algorithm is to retransmit
(most likely) missing packets as soon as packet loss is detected without waiting until
the retransmission timer expires. Thus, the problem to resolve here is to identify lost
packets (or congestion) as soon as possible in order to retransmit these packets very
quickly. Congestion or packet loss is indicated by duplicate ACKs being observed
at the sender. However, duplicate ACKs might also be caused by packets which

10Research on Internet traffic has shown that this implicit assumption of congestion avoidance, namely
that packet loss occurs mainly while the network is congested, is reasonable.

42 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

arrive out-of-order. The trick is to wait for a small number of duplicate ACKs to
be received. If only a re-ordering of the packets occurred, there should only be one
or two duplicate ACKs. On the other hand, if three or more duplicate ACKs are
received in a row, it is a strong indication that a packet has been lost.

Fast Recovery: After the fast retransmission algorithm has sent the packets that were
most likely been discarded by intermediate router, the fast recovery algorithm initiates
congestion avoidance rather than slow start (which would be normally invoked when
congestion occurs). This improvement enables high throughput even under moderate
congestion, especially for large windows. The reason for avoiding slow start is that
the receipt of duplicate ACKs indicates that data is still flowing between the two end-
nodes. Thus, only a moderate or short-term congestion occurred. Preventing TCP
from abruptly reducing the flow (which would be the case if slow start is activated)
is the trick here.

2.2.3 Real-time Transport Protocol

The Real-time Transport Protocol (RTP) provides, according to its specification [S+96],
end-to-end delivery services for data with real-time characteristics such as interactive audio
and video. RTP is designed to meet the transport requirements of multimedia conferencing
applications with two, several, or even a large number of participants.

The real-time transport protocol consists of two closely related parts:

• RTP, the real-time transport protocol, adds flow information of the transmitted real-
time media stream to the data packets.

• RTCP, the real-time transport control protocol, provides a feedback channel from
the receiver to the sender. It monitors the QoS of the data stream and conveys the
QoS feedback along with minimal session control information about the participants
in an on-going session.

Even though RTP is supposed to be a transport protocol for real-time streaming appli-
cations, it does not provide transport services nor does it guarantees QoS regarding the
bandwidth, delay, jitter, or packet loss. It simply adds a protocol header with stream
information characterizing the media flow (for example, a sequence number, session id
and timestamp) in front of the actual media payload. This information can be used to
compute the QoS that a particular data packet experienced on its transmission path. The
network QoS estimation can then be fed back to the sender by means of the control protocol
RTCP. Sending applications may use the QoS feedback to adapt to the dynamically chang-
ing network conditions, for example, by using adaptive encoding, increasing redundancy,
and utilizing low-bandwidth encoding formats. The feedback of the momentary transmis-
sion quality might also be valuable to diagnose faults and locate whether problems are

2.2. TRANSPORT LAYER PROTOCOLS 43

local, regional, or global. Moreover, it could also be used by third-party monitors (such
as in routers) to monitor performance of the network and diagnose problems. However,
since RTCP’s feedback mechanism is based on the principles of “closed-loop” feedback, the
QoS information will reach the sender after a certain delay. It is therefore not useful for
instantaneous adaptation or transmission control.

In more detail reviewed, the basic services provided by RTP are payload type identification,
sequence numbering, time stamping and source identification.

The sender timestamps each RTP packet with the relative time (relative to the other
samples/packets of the stream) of the first sample of the data stream in the packet. The
receiver can use the timestamps to reconstruct the original timing before playing the data
stream back. They are probably the most important information provided by the RTP
header since it is the means to estimate the delay and jitter.

The sequence numbers are useful to identify and process packets that arrive out of order
at the receiver node. They facilitate also packet loss detection.

The payload type is intended to tell the receiving application how to interpret the payload
data. Based on the payload type, the receiving application selects the appropriate encoding
and compression schemes. So called profiles specify default mappings of payload type codes
to payload formats. An initial set of default mappings for audio and video has already been
specified in [Sch98]. Besides providing information on how to interpret the RTP payload,
the payload type can be used within the network to achieve implicit resource reservations
or other QoS guarantees.

The source identifier can be used, for example, in audio conferencing applications to in-
dicate the sender (user) currently talking. In multicast applications with several senders,
where all sources send their data to the same multicast address, source identification be-
comes necessary in order to associate incoming packets to the proper data stream.

Figure 2.7 presents the format of the RTP header. Besides the header fields already
described, the RTP header includes a version number, padding, extension and marker bits
for special or experimental use, the number of contributing sources, and their identifiers.
Multiple contribution sources are specified if the payload of the RTP packet contains data
from several sources. The synchronization source indicates where the data was aggregated,
or determines the source of the data if there is only one.

RTCP, the control protocol of RTP, periodically transmits control packets to all partici-
pants in the session. The two main tasks of RTCP can be described as follows:

Delivery Monitoring: RTCP provides QoS feedback by monitoring the receiving data
flows and sending those reception statistics or control information back to the senders.
Feedback is mainly sent in the form of Sender Reports (SR) and Receiver Reports (RR).
SRs are issued by receivers that are not only receivers, but also senders. Thus, a SR
encompasses all RR information plus additional sender specific transmission statistics, for

44 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

.

0 8 3116 24

.

Timestamp

Sequence NumberPayload TypeV=2

Contributing Source (CSRC) Identifier
(0 - 15)

Synchronization Source (SSRC) Identifier

CSRC Cnt

Figure 2.7: The RTP Protocol Header

example, timestamps, the number of RTP data packets, and the number of payload octets
transmitted. Both, SR and RR, contain performance statistics giving the number of packets
lost, the highest sequence number received, and jitter along with delay measurements to
calculate the round-trip delay time.

Identification: RTCP conveys identification information about the participants in an
RTP session. This kind of information is transported in a third type of RTCP report
called Source DEScription (SDES). The identification information is especially useful for
sessions without, or with only “loosely-controlled”, session management to distribute min-
imal session control information to participants that enter and leave the session without
being member or negotiating session parameters.

IP Header RTP PayloadUDP Header RTP Header

Figure 2.8: IP packet containing real-time data encapsulated in a UDP and RTP packet

Applications typically run RTP and RTCP on top of UDP/IP. RTP, however, is designed
such that it can be used with other suitable underlying network or transport protocols.
Figure 2.8 illustrates the structure of an IP packet containing real-time data that is de-
livered via RTP/UDP. Since RTP usually runs on top of UDP/IP, it also supports data
transfer to multiple destinations using multicast distribution. RTP and RTCP are usually
implemented as part of the application rather than as separate transport level components
within the operation system.

As a result, RTP is often criticized to be mistakenly called a transport protocol. And,
since RTP provides merely a header containing information about the real-time stream
that is attached by the application rather than the transport layer, it is certainly not a
transport protocol according to the OSI reference model. Just recently it was proposed

2.2. TRANSPORT LAYER PROTOCOLS 45

to elevate RTP to the status of protocol, equivalent to TCP or UDP [R+98b]. RTP
packets would then be explicitly labeled as such in the IP packet header. Using RTP as a
“native” transport protocol has the potential to vastly simplify the problem of classifying
real-time streams and header compression. However, since the RTP header carries mainly
information relevant to the end-user application (for example, the media payload type or
the application timestamp) it would be unwise to declare the application level protocol
as transport protocol. A proper transport protocol, for example, does not care for the
payload type of a media stream; it might rather be interested in the data rate and peak
rates.

2.2.4 Summary

Table 2.2 summarizes the results of this section by comparing the transport services offered
by UDP and TCP and the streaming mechanism provided by RTP (RTCP).

Criterion TCP UDP RTP(RTCP)

Reliable transport + - -
– Bit error protection + + +
– Guaranteed packet delivery + - -
– Packet order preservation + - -

Connection-oriented + - -
Packet-oriented + + +
Packet retransmission + - -
Network Rate control + - -
Application rate control - + +
Sequence number + - +
Payload type - - +
Timestamps - - +
Session id - - +
QoS feedback - - +

Table 2.2: Comparison of UDP, TCP and RTP-on-UDP as Transfer Mechanisms

Reviewing the characteristics of UDP and TCP, one can conclude that for normal (dis-
crete) data traffic (such as bulk and burst traffic) where end-to-end delay is not critical,
TCP is definitely the protocol of choice. The fact that it guarantees reliable transmission
makes it superior for non-time-critical data traffic. The successful use of TCP in numerous
applications clearly affirms this.

TCP’s transport level rate control, namely slow start and congestion avoidance, provide
a basis for sharing network bandwidth fairly among network users. By avoiding network
congestion, TCP has a significant impact on the utilization of the network in terms of

46 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

successful transmission. Although TCP’s network rate control is acknowledged as a very
valuable protocol addendum, it forecloses application level rate control at the same time.
Applications which require short end-to-end delays or need to transmit data with constant
bit rates, need the ability to control the transmission rate by themselves. Moreover, time
critical or real-time applications perform badly in conjunction with slow-start.

As a result, those applications are better off with the simple datagram protocol, UDP,
as a transport protocol. This allows applications to freely control the transmission rate.
Furthermore, the lack of reliable transmission might, in the case of time critical applica-
tions, be a benefit rather than a disadvantage. Since reliability in the best-effort Internet
can only be achieved by means of retransmission (if in-band error correction is neglected),
which drastically increases the end-to-end delay, retransmitted packets are in most cases
worthless, simply due to “too late” arrival. Moreover, applications that require group com-
munications, and hence do directly benefit from the multicast capabilities of the MBone
or IPv6, cannot deploy a “connection-oriented” transport protocol.

Even though UDP is currently the better transport protocol for media streaming in the
global Internet, it has two serious drawbacks. First, the lack of network-level flow control
impedes congestion avoidance. Nothing prevents applications from permanently congesting
the network. Second, UDP causes many problems if network resources need to be fairly
shared among different protocols and applications. If congestion occurs, for example, TCP
backs off whereas UDP keeps sending with whatever rate the application requires. From
this follows that TCP traffic is currently suppressed by UDP traffic in the Internet.

Finally, RTP is considered as a streaming mechanism. Since UDP is used on the trans-
port level, RTP-on-UDP has the same transport properties. The additional streaming
information, namely the timestamp and session id, can be exploited to compute the “in-
stantaneous” QoS properties of the delivery path. This information is especially valuable if
adaptation is deployed within the sender and receiver applications. In order to propagate
the QoS feedback to the sender, RTP includes the control protocol RTCP.

Summarizing one can conclude that real-time streaming application which require sender
timestamps or can make use of the QoS information clearly benefit from the streaming
mechanism RTP-on-UDP.

2.3 Reservation Protocols

Resource reservation protocols generally communicate application QoS requirements to
the network elements along the transmission path. If the QoS request is admitted by
the network (i.e. bandwidth, processing time, queuing space is at acceptable levels), the
resource reservation is established.

A common misunderstanding is that reservation protocols provide better QoS. Those sig-
nalling protocols simply establish and control reservations. Enforcement of the reservation

2.3. RESERVATION PROTOCOLS 47

must be provided by another component of the QoS architecture. It is similar to flight
reservation systems. The booking system makes sure that a seat is available for a certain
passenger by marking the seat as “unavailable” for everybody else. However, if nobody at
the airport controls the boarding and checks the flight tickets, the plane might be full of
passengers without reservation. Thus, resource reservation protocols (signalling) and QoS
control services (controlling) complement each other; but are useless on their own.

This section introduce two known resource reservation protocols that are currently used
within the Internet: RSVP and YESSIR.

2.3.1 RSVP

The Resource ReSerVation Protocol (RSVP) [Z+93, B+97b] was developed in a joint project
at the Information Science Institute of the University of California (ISI) and Xerox Cor-
poration’s Palo Alto Research Center (PARC). Today the development of RSVP is carried
on in the IETF working groups for RSVP and Integrated Services (see section 3.2.5).

2.3.1.1 Design Goals

RSVP is intended to be a general resource reservation mechanism used within the Internet.
It is used to establish reservations for network resources on the path from a data stream
source to its destination. The goal of resource reservation is to ensure that the packets are
handled within the network such that they meet the QoS demands of the communication
applications. According to the specification, RSVP provides “receiver-initiated” setup of
resource reservations for unicast and multicast data flows in heterogeneous networks with
good scaling and robustness properties.

In the first publication on RSVP [Z+93] the developers listed the main design goals of this
new reservation mechanism.

Accommodation of heterogeneous receivers: In a wide are network, such as the
Internet, different receivers and the paths to these receivers usually have totally dif-
ferent characteristics. Hence, RSVP shall provide a means for heterogeneous receivers
to make reservations specifically tailored to their own needs.

Adaptation to changing multicast groups: The ability to provide communication
services to multiple participants at the same time raises another issue; the member-
ship of large multicast groups can be highly dynamic. Thus, RSVP aims to deal
gracefully with changes in the multicast group membership.

Exploiting different resource needs for efficient resource utilization: Streaming
audio within multicast capable audio conferencing tools generally requires only suffi-
cient network resources for one (or two) audio streams at the same time; it does not

48 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

make sense if everybody talks at the same time. Therefore, it is important for RSVP
to allow end-users to specify their application needs.

Allowing receivers to switch channels: In a conference with several participants (or
speakers), end-users might only be interested in reservations for the media stream
of one speaker at a time, but would like the opportunity to switch between various
speakers. Therefore, RSVP allows receivers to change “channels” without loosing
their reservations. However, this design choice has a significant drawback. If traffic
that is not confirm with the reservation is by default sent as simple best-effort traffic,
nothing prevents this traffic from being sent and wasting a share of the bandwidth.

Adaptation to changes in the underlying network: RSVP relies on the IP routing
protocol. In the large internetwork, router errors or overloaded links can force the
routing protocol to occasionally re-route data flows. Hence, RSVP should be able to
deal gracefully with such changes in routes, by automatically re-establishing resource
reservations along the new path if adequate resources are available.

Controlling the protocol overhead: Since scalability is also an important issue in
the context of Internet communication, and in particular with respect to multicast
communication, RSVP should avoid both, the explosion in protocol overhead when
group size gets large, and also incorporate tunable parameters so that the amount of
protocol overhead can be adjusted.

Independence of underlying technologies: The last design goal is not specific to the
problem of resource reservation. It is a general matter of modular design. RSVP
should be designed in such a manner as to be largely independent of its architectural
components and the underlying network technology.

2.3.1.2 Operation Overview

Each RSVP capable network node requires several modules; see Figure 2.9 as an illustra-
tion.

The inter-operation between modules accomplishes both, reservation setup and enforce-
ment. The RSVP daemon handles all protocol messages required to set up and tear down
reservations.

RSVP provides a general mechanism for creating and maintaining distributed reservation
state in routers along the transmission path of a flow’s data packets. If sufficient network
resources are available, its requests will result in resources being reserved in each node
along the data path. RSVP only supports reservations for simplex flows, i.e., it requests
resources in only one direction. However, nothing prevents an application process from
being a sender and a receiver at the same time.

2.3. RESERVATION PROTOCOLS 49

RSVP
Admission

Policy

Control

Control

Application

Packet
SchedulerClassifier

PacketData
Path

End node

RSVP capable IntServ node

Daemon

Figure 2.9: Interaction between modules on an RSVP capable node or end host

RSVP is a network level reservation protocol that can be classified as an Internet control
protocol similar to the routing protocols. The RSVP process on a network node operates
in the background to process the reservation signalling – not in the data forwarding path –
as sown in Figure 2.9. RSVP transfers and manipulates QoS and policy control parameters
as opaque data, passing them to the appropriate traffic control (see section 3.2.5.3) and
policy control modules for interpretation.

In order to achieve a proper reservation “signalling channel”, RSVP deploys “raw” IP
datagrams (with protocol number 46) in current implementations. Raw IP datagrams are
supposed to receive a better service than standard data traffic due to their network control
end. This guarantees that RSVP messages are delivered even under high or overloaded
network conditions. Alternatively it is possible to encapsulate RSVP messages in UDP
datagrams. This fall-back solution is needed for systems which do not provide support for
raw network I/O.

Since reservations in RSVP are receiver-initiated, RSVP must make sure that the reserva-
tion messages (RESV) follow exactly the reverse route to the data flow. This reverse path
(or tree in the case of multicast) is maintained by periodic path messages (PATH) initiated
by the senders. PATH messages are sent “downstream” along the routing path (or tree)
provided by the IP routing protocol. Reservation messages (RESV) propagate only as far
as to the closest point on the reverse tree where a reservation of equal or greater level for
the same flow has already been established. Figure 2.10 illustrates how the PATH and
RESV messages travel between the RSVP nodes assuming a simple network topology.

50 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

N6

N3

N1 H2

N2

N5

H3

routing path

reservation path

H1

.

N4

Figure 2.10: A simple network topology with the data path (or tree) from the sender (H1)
to the receiver (H2 and H3) and the reverse path (tree) from the receivers to the sender

During the reservation setup phase an arriving QoS request (in an RESV message) must
pass two local decision modules, namely the admission control that is part of traffic con-
trol, and the policy control. Admission control checks out whether the node has sufficient
resources available to provide the requested QoS. Policy control, on the other hand, deter-
mines whether the user has the expected administrative permission to make the reservation.
If both subsystems decide to accept the reservation request, the reservation properties are
set in the packet classifier and in the packet scheduler (i.e. in the link layer interface)
to obtain the desired QoS. In order to continue the end-to-end reservation establishment
along the transmission path, the RESV message is forwarded “upstream” (on the reverse
path or tree) towards the sender(s). If the request is rejected, the RSVP daemon returns
a reservation error message (RESVERR) to the application which originated the request.
When sufficient resources are available, the RESV message will finally arrive at the sender
node indicating that the reservation has been successfully established.

Although RSVP is a general mechanism for resource reservation, independent of the QoS
traffic control framework, it is so far only used in conjunction with the Integrated Services
(IntServ) architecture (see section 3.2.5). The structure and contents of the QoS parameters
according to IntServ are specified in detail in [Wro97b]. The parameters for policy control
are still under development.

2.3. RESERVATION PROTOCOLS 51

2.3.1.3 Reservation Model and Styles

An elementary RSVP reservation request contains a flow descriptor. It basically includes a
FlowSpec and a FilterSpec. The FlowSpec specifies the desired QoS, whereas the FilterSpec,
in conjunction with a session specification, defines the “flow” (the set of data) to receive
the QoS. The FilterSpec enables QoS guarantees only for an arbitrary subset of the packets
in a session. Packets not matched by the FilterSpec are treated simply as best-effort traffic.

The FlowSpec includes a service class (currently either controlled load or guaranteed) and
two sets of numeric parameters: an RSpec which defines the desired QoS, and a TSpec
which describes the data flow. Both, the format and content of TSpecs and RSpecs are
defined as part of the IntServ models [Wro97b] (see also section 3.2.5.2 and 3.2.5.3). The
format of the FilterSpec depends upon the underlying network protocol (whether IPv4 or
IPv6 is in use). The packet filters operate upon flow information within the packet header,
the upper-layer protocol headers or even the payload data. The source and destination IP
addresses, the transport ports and the flow label are commonly used to filter a data flow.

Within RSVP three different reservation styles are defined. These are classified in terms of
“sender selection” (explicit or wildcard) and “reservations” (distinct or shared) (see Table
2.3).

Sender Reservations
Selection Distinct Shared

Explicit Fixed-Filter Shared-Explicit
(FF) Style (SE) Style

Wildcard (None defined) Wildcard-Filter
(WF) Style

Table 2.3: RSVP Reservation Styles

The FF style forces a “distinct” reservation for each individual sender, while SE and WF
styles allow the sharing of a single reservation among all packets of the selected senders.
The SE style allows the receiver to explicitly specify the set of senders to be included,
whereas a WF shares a single reservation with the flows of all upstream senders.

2.3.1.4 Design Principles

In order to meet the design goals presented in section 2.3.1.1, RSVP exploits six basic
design principles that are briefly described in this section. These design principles are
often used to classify RSVP among other reservation mechanisms and to compare it with
other protocols. The principles are described here, and their advantages and disadvantages
for resource reservation in the Internet are discussed.

52 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

Receiver-Initiated Reservation: In contrast to most other reservation mechanisms,
RSVP deploys a receiver-initiated reservation mechanism. Thus, receivers choose the level
of resources and decide when to set up and tear down reservations. Since RSVP provides
service for multicast applications, senders would have to maintain a reservation for each
receiver of the multicast group. This, of course, would not scale for large multicast groups.
Thus, RSVP is designed such that the sender does not necessarily need to know the number
of receivers and their network characteristics. Furthermore, if network charging is deployed
in future networks, the receiver is likely to be the party paying for the requested QoS. Thus,
a receiver-initiated reservation mechanism is advantageous.

Receiver-based reservation, however, has two critical aspects. First, in order to allow re-
ceivers to reserve resources along the transmission path, which is not known by the receiver
due to the lack of routing information, RSVP must deploy the PATH-RESV mechanism de-
scribed earlier (or some equivalent approach). Second, receivers can mistakenly reserve less
bandwidth than the actual data stream requires. The result is that the sender pushes more
data into the network than the network can cope with. The consequences are congestion,
leading to uncontrolled packet drop, and wasted bandwidth.

Separation of Reservations from Packet Filtering: Unlike most other reservation
protocols, RSVP is designed to make a clear distinction between the resource reservation
and the filters determining the packets that can use the resources. The packet classifier
is responsible for determining the packets that can use the reserved resources. Both, the
packet filter parameters and the reservations are set up by means of RSVP.

The main benefit of this separation is that the packet filters can be dynamically changed
within a session without changing (and running the risk of loosing) reservations. Thus, the
implementation of channel (i.e. sender or speaker) switching becomes simple.

Supporting Different Reservation Styles: Providing reservation styles that support
distinct and shared reservations for explicitly selected or all senders of a session offers
a flexible reservation architecture. These different reservation styles allow intermediate
routers to merge individual reservations for the same session (as in a multicast group).

Maintaining Soft State: RSVP maintains the resource reservations within the individ-
ual network elements by keeping them as soft-state. Soft-state is simply state information
that requires periodical refresh, otherwise it is discarded and its associated resources are
freed. Soft-state within RSVP is maintained by periodically sending PATH and RESV
messages at configurable refresh intervals. State information is updated by simply sending
the new path or reservation states.

The RSVP soft-state mechanism adds both adaptability and robustness. Even if the trans-
mission path changes due to a route change of the network protocol, the soft-state ensures

2.3. RESERVATION PROTOCOLS 53

proper RSVP operation; unused reservations will eventually time out and new reservations
will be established along the new path. RSVP also supports explicit tear down messages
(TEARDOWN) to avoid holding reservations for several refresh periods longer than re-
quired. The soft-state mechanism is also robust against occasional loss of control messages
or if hosts lose their entire state due to a crash. The recovery time following such an
error depends mainly on the refresh period of the soft-state. The benefits of the soft-state
approach, however, do not come for free; The periodic refresh or exchange of messages be-
tween RSVP nodes on a per-session basis adds significant overhead and does not scale. The
periodic messages increase the processing load on core routers and the bandwidth required
for signalling increases in proportion to the number of sessions. However, the scalability
problem occurs only in the core of the network. If RSVP is used within Intranets or local
area networks at the edge of the Internet, scalability is not an issue.

There are several solutions to resolve the scalability problem: first, it is suggested that
RSVP is used only at the edge of the network, whereas the DiffServ architecture is deployed
in the core (see section 3.2.6); second, research on RSVP has shown that soft-state could
easily be replaced by a hard-state mechanism with soft-state as fall back solution [MSH98];
and third, ongoing research in the area of aggregation of IntServ state proposes solutions
allowing the omission of per-session soft-state in the core network [BV98, GA98].

Protocol Overhead Control: The protocol overhead caused by RSVP is determined
by the number of RSVP messages sent, the size of these messages and the refresh frequency.
RSVP tries to minimize the protocol overhead by merging path and reservation messages
of equal sessions as they traverse the network. Therefore, each link between RSVP nodes
carries no more than one PATH message per session in either direction during a path
refresh period (and respectively for RESV messages).

Modularity: RSVP mainly interfaces with (1) the end-user application which provides
the FlowSpec, (2) the network routing protocol which forwards the PATH messages, and
(3) the network admission control process. RSVP is designed to be largely independent
of these interfacing components and the FlowSpec format used by the application and the
admission control module. The FlowSpec is simply treated as a number of bytes which
must be propagated to the admission control modules where it is processed. RSVP is also
independent of the underlying routing protocol(s). The only assumption about the routing
protocol is that it provides both unicast and multicast routing. RSVP does not assume
that the route between a given sender and a receiver is fixed or that it is the same on
the reverse path. However, if RSVP obtains notifications of route changes, a fast recovery
mechanism, called local repair (see [B+97b]), can be deployed to re-establish reservations
on the new path. The independence of the route path allows RSVP to be very robust.
As long as the network protocol finds a route from the source to destination, RSVP will
operate.

54 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

In contrast, since changes in the transmission routes are allowed, prevents RSVP from
guaranteeing reliable QoS. Route changes due to “new routes becoming available” (rather
than “routes being lost”) may cause RSVP to lose the reserved resources on the old link
if there are not enough resources available on the new path. Since route changes (or oscil-
lations) are not rare in the Internet 11 and RSVP cannot guarantee QoS “promises” when
route changes occur, RSVP cannot be classified to be a reliable reservation mechanism.

The routing interface to RSVP [ZK98] is subject to continuous research because more
advanced routing facilities are desirable. One research area is “route pinning”. Flows
should have the option to continue using the “old” path without running the risk of loosing
their QoS guarantee if it is still properly functioning. Research in the area of QoS-based
routing might also put forth solutions to this problem.

2.3.2 YESSIR

In joint research between IBM’s Watson Research Center and Columbia University YEt
another Sender Session Internet Reservations (YESSIR) mechanism has been developed.
YESSIR [PS98] is built on top of RTP, and in particular RTCP (see section 2.2.3). Us-
ing RTP to facilitate resource reservation was motivated by the observation that a large
proportion of applications demanding QoS guarantees are real-time streaming applications
that already use RTP.

Similar to RSVP, as described in 2.3.1, YESSIR uses soft-state to maintain reservation
states in the network, supports shared reservations among multiple senders, and is com-
patible with the Integrated Services architecture (see section 3.2.5).

In contrast to RSVP, however, YESSIR is firstly a sender-initiated and in-band approach
to reserve resources in the Internet. Secondly, it aims to be a light-weight reservation
mechanism. It requires significantly less code and run-time complexity than RSVP. And
thirdly, YESSIR extends classical reservation protocols by allowing operation based on
“partial reservations” which are expected to improve over the duration of sessions.

Although both reservation mechanisms can be used as reservation protocol for the Inte-
grated Services architecture, they can operate side-by-side on the same network without
interrupting proper operation or affecting each other’s reservations.

2.3.2.1 Design Goals

Sender-initiated Reservation: The developers arguments for sender-initiated reserva-
tion are contradictory with those of the RSVP designers. First, they do not believe
that most applications can make much use of the benefits of receiver-initiated reserva-
tions. And second, they believe that sender-based reservation fits better with policy

11It has been shown that route changes (or oscillations) occur frequently in the Internet [Pax96a].

2.3. RESERVATION PROTOCOLS 55

and billing, especially since the number of entities making reservations is likely to be
much smaller than the number of receivers.

Soft-State: The network nodes maintain YESSIR reservation information as soft-state.
Thus, resources are automatically released and state information freed as soon as
the periodic refreshes time out. The soft-state makes YESSIR robust against route
changes and control message loss. An explicit teardown mechanism is offered to avoid
maintaining reservations longer than required.

The fact that route changes cannot be prevented and can only be handled by soft-
state also makes YESSIR an unreliable reservation protocol.

Allowing Partial Reservations: Classical reservation mechanisms provide an “all-or-
nothing” reservation semantic. Reservations are either granted or denied on a end-
to-end basis. YESSIR, in contrast, exploits a reservation model that allows partial
reservations where some of the links along the delivery path have resources reserved,
whereas others have not. The data flow is simply forwarded as best-effort traffic
on those portions where reservation could not be established. Due to the soft-state
properties and the periodic reservation messages, links without reservations might
acquire a reservation as others tear down. End-users have the choice of allowing
operation based on partial reservations or only on end-to-end reservations.

Although partial reservations seems to be a nice addendum, it is still not clear how
useful this reservation mode is in practice. Applications use reservation protocols usu-
ally to reserve the resources they need for a certain communication session. Therefore,
it is arguable whether such applications can be satisfied with partial reservations or
if they would prefer not to establish a low-quality communication session.

Providing different Reservation Styles: YESSIR supports also individual and shared
reservations. Individual reservations are established on a per-sender basis while re-
sources for shared reservations are simultaneously used by all senders of an RTP ses-
sion. Since YESSIR controls (shared) reservations from the sender direction, channel
(or speaker) switching is not trivial.

Low Protocol and Processing Overhead: YESSIR is based on in-band signalling
where the reservation messages are transported as part of RTCP. Thus, YESSIR
does not define another signalling protocol; it merely defines the message objects
which are carried in the RTCP sender reports. Reservation establishment requires
only one reservation message object.

Since RTCP messages are in small or moderate groups sent by default more fre-
quently than RSVP PATH and RESV messages, the overall protocol overhead may
be even worse than in RSVP. Moreover, a proper reservation protocol requires either
guaranteed bandwidth for the signalling channel or high priorities for the reservation
messages to allow proper reservation control even under high load. In-band signalling
built on top of a standard transport level protocol prevents both.

56 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

Inter-operability with RTP and IntServ: In order to piggy back YESSIR message
objects at the end of the RTCP SR and RR reports, an optional reservation extension
for RTCP is defined (see Figure 2.11). Normal RTP operation at the end systems is
not affected by this protocol extension. The YESSIR extension includes (a) a generic
fragment, defining the desired reservation style, the soft-state refresh interval and
whether to make partial reservations; (b) a FlowSpec fragment, determining the QoS
control parameters required for admission control and traffic control; (c) an optional
networking monitoring fragment, used to store link specific resource information; and
(d) an optional reservation error fragment.

- link resource collection
- reservation flow specification (FlowSpec)
- reservation style
- refresh interval
- reservation command: active/passive

YESSIR message:

- detailed report for each source
- sender information

Sender Report:

RTCP Message

UDP Header

IP Header with Router-Alert Option

Profile-specific extensions

- reservation failure report

Figure 2.11: The YESSIR message format

YESSIR transfers the QoS control parameters also as opaque data 12 to the network
nodes. With this respect, YESSIR is like RSVP independent from the FlowSpec
format used by the application and the admission control module. The traffic flow,
however, is primarily described in terms of the IntServ models as described in section
3.2.5.3. Besides those FlowSpec formats, two additional formats were considered in
the first release: the RTP payload type and the IPv4 type of service.

12The flow specification is treated simply as a number of bytes.

2.3. RESERVATION PROTOCOLS 57

2.3.2.2 Operation Overview

Senders of real-time streaming applications periodically send RTCP sender reports (SR)
to the receiver. The SRs include transmission and reception statistics of the data flow
transmission. YESSIR inserts the reservation control information into these SRs. In order
to notify network nodes that an RTCP message contains important YESSIR messages,
the IP router alert option [Kat97, K+98] is used. It indicates network routers to closely
examine the content of the IP packet. Intermediate routers that do support the router
alert and the YESSIR protocol simply forward the RTCP message unaltered to the next
hop. End systems commonly ignore the router alert option.

Deploying the router alert option has the advantage that the reservation protocol can be
deployed incrementally. On the other hand, using the IP level alert option for application
layer protocol (RTCP) purpose is obviously not a good design decision. Deploying the alert
option within YESSIR, for example, forces all routers to closely examine these packets even
if a router does not support YESSIR.

If one assumes small size multicast groups, RTCP reports are sent more frequently than
RSVP PATH or RESV messages 13. The refresh period does usually not exceed a couple
of seconds. This results in better responsiveness of YESSIR in the case of an error or route
change than RSVP. As a result, YESSIR operates well even without a router signal upon
a route changes. The better responsiveness of YESSIR, however, comes at the expense of
greater protocol overhead.

Finally, since YESSIR is based on RTP, another advantage specific to RTP appears.
YESSIR enables reservation establishment only based on the information provided by the
RTCP sender report. SRs typically contain a byte count and a timestamp. Based on this
information, routers can very easily compute (without having to count all data packets)
an estimate of the QoS requirements of the data flow. Thus, YESSIR also provides a
reservation service that operates in measurement mode.

2.3.3 Summary

The main similarities and differences between the resource reservation protocols RSVP and
YESSIR can be summarized as presented in Table 2.4.

From this section one can conclude that YESSIR, although a very simple and light-weight
reservation mechanism on top of RTCP that supports partial reservations, has many fea-
tures in common with RSVP.

It was also shown that YESSIR has a few significant disadvantages. First, building a
network resource reservation mechanism on top of an application layer protocol which
uses in-band signalling does not allow proper reservation control on highly loaded (or

13In RSVP the default refresh period is set to 30 seconds.

58 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

Criterion RSVP YESSIR

Per-flow reservation + +
Soft-state + +
Partial reservations - +
Channel switching + -
Fast error recover + -
Reliable - -
Initiation receiver sender
Signaling channel out-of-band in-band
Reservation layer network application
Styles FF, SE, WF individual, shared
QoS architecture IntServ IntServ
Scalable on edge networks on edge networks

Table 2.4: RSVP vs. YESSIR: What are the differences?

overloaded) networks. Second, since YESSIR is sender-initiated prevents receivers from
choosing the QoS level and determining the set up and tear down of reservations. Third,
sender-based reservation also complicates channel switching and limits reservation styles
to individual and shared. Forth, even though the refresh period of YESSIR is usually much
shorter which has a negative impact on the protocol overhead, the lack of an error recover
mechanism delays the reservation recovery in the case of route changes. RSVP which was
especially designed for the purpose of resource reservation, resolves these problems in a
proper manner.

Although RSVP is currently recognized as the superior resource reservation mechanism,
it has two considerable drawbacks in common with YESSIR. First, both mechanisms do
not scale in the core of the network due to the periodical refresh on a “per session” basis.
Second, they provide only unreliable reservation service since both rely on the underlying
Internet protocol and datagram routing.

Current research in the area of resource reservation tries to solve these flaws. A few
promising approaches, such as DiffServ and IntServ integration (see chapter 3), session
or flow aggregation, and hard-state reservation mechanisms, have already been proposed
to reduce the scalability problem. The IPv6 flow label (see section 2.1.2), on the other
hand, might have the potential to resolve the “flow routing problem” in future reservation
protocols.

2.4 Application Layer Protocols

Among the great number of application layer protocols used in the Internet only the pro-
tocols useful for stream setup and control of real-time media streaming applications are

2.4. APPLICATION LAYER PROTOCOLS 59

examined in this section.

2.4.1 Hyper Text Transfer Protocol

The Hyper Text Transfer Protocol (HTTP) [BL+96] is a generic, stateless, and object-
oriented application-level protocol that can be used for a variety of tasks based on the
request-response methodology. The light-weight protocol provides service for distributed,
collaborative, hypermedia information systems. Since 1990 when the World-Wide Web
(WWW) initiative decided to use HTTP, it has evolved to one of the most widely deployed
application level protocols today.

Although it is currently exclusively used on top of the transport protocol TCP (see sec-
tion 2.2.2), HTTP is independent of the transport protocol. It merely requires that the
underlying transport protocol provides reliable service.

In practice most information systems or multimedia applications require more functionality
than simple document retrieval. Therefore, HTTP allows an open-ended set of methods
to be used to indicate the purpose of a request.

2.4.1.1 HTTP URLs

HTTP is based on the concept of Uniform Resource Locators (URL) [BL+94]. URLs
unambiguously identify and locate a resource in the Internet by providing an abstract
identification of the resource location. Different URL formats are defined for each major
class of Internet service. The first part of the URL specifies the service type, for example,
FTP URLs start with ftp:, Email URLs begin with mailto:, etc.

Although the different URL types have very similar syntax and semantics, from now on
the HTTP URL type is emphasized. The HTTP URL syntax is defined as follows:

http://<host>[:<port>]/<path>[?<searchpart>]

The individual tags are used as follows:

<host> specifies the Internet domain name (or IP address) of the server application (if
authentification is required, the user name and password can also be encoded)

<port> determines the port number of the server process. Well-known protocols have
default ports (for example, HTTP uses port 80); hence, it is an optional parameter.

60 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

<path> determines the location of the resource on the server. It is usually the relative
path from the root directory of the HTTP server to the resource. Usually the path is
used to specify a single document or script that is invoked by the request. However,
the path can also be used to specify other objects (for example, directories, scripts,
parameters within the server application) which are invoked, retrieved or changed.

<searchpart> provides a mechanism to specify request properties. The <searchpart> can
be used, for example, to transfer [variable, value] pairs to CGI scripts14. The format
is simply: <varname>=<value>. The “&” character is used to separate multiple pairs.

An example of a complex HTTP URL is presented here:

http://spock.lancs.ac.uk:1090/webaudio?method=PLAY&format=GSM

This example shows how URLs can be used to control applications that provide a HTTP
interface. The HTTP request is sent to the Internet host spock.lancs.ac.uk. The ap-
plication process listening on port 1090 will receive the request and processes it based on
the <path> and the <searchpart> parameters. In this example WebAudio, the real-time
audio streaming application developed within this work, is commanded to start streaming
the audio source referenced by webaudio and to use the GSM codec as audio encoder.

2.4.1.2 Overall Operation

HTTP is a classical client-server-based request-response protocol. Clients send the request
consisting of the request method, a HTTP URL, and the protocol version to the server.
The server then processes the request and responds with a status line including the protocol
version and a success or error code possibly followed by the requested resource in the case
of a simple retrieval request.

HTTP communication is client-initiated by user agents, such as, Web browsers. A client
opens a reliable connection to the server or to some intermediate proxy15, gateway16, or
tunnel17 which imitates a HTTP server. The connection provides then a reliable commu-
nication channel for the request-response pair. According to HTTP/1.0 each transaction
must use a separate connection. Thus, the server closes the connection after having sent
the response.

14The Common Gateway Interface (CGI) defines a general mechanism to invoke scripts or applications
as server-side HTTP extensions.

15A proxy forwards a request towards the server identified by the URL after applying changes to the
request.

16A gateway acts like a layer above some other server(s) and translates a received requests to the
underlying server’s protocol, if necessary.

17A tunnel acts as a relay point between two connections without changing the messages; they are used
when an intermediary must be passed which cannot understand the messages.

2.4. APPLICATION LAYER PROTOCOLS 61

Summarizing, each request/response can be seen as a single transaction between the client
and the server. Since the server considers (and indeed sees) successive requests from the
same client as being independent from each other, HTTP is said to be stateless.

2.4.1.3 Message Format

This section describes the basic format of the request and response messages according to
the HTTP/1.0 specification. In earlier versions of HTTP (i.e. HTTP/0.9), much simpler
requests and responses (known as Simple-Request and Simple-Response) were used.
However, version 1.0 demands the more complex Full-Request format (see Table 2.5)
and Full-Response format (see Table 2.6).

A HTTP/1.0 compliant Full-Request message sent from a client to a server includes the
Request-Line and additional option headers fields. The optional Request-Header allows
the client to pass additional information about the request and the client itself to the
server. A detailed format description is presented in [BL+96].

Full-Request = Request-Line
*(General-Header | Request-Header | Entity-Header)
CR18LF19

[Entity-Body]

Request-Line = Method SP20HTTP-URL SP HTTP-Version CRLF

Method = GET | HEAD | POST | extension-method

Table 2.5: Syntax of a full HTTP requests

The Method generally used within the WWW is called GET. It retrieves the resource identi-
fied by the HTTP-URL (for example HTML documents, images files, etc.). If the HTTP-URL

refers to an executable (i.e. a CGI script or application), the output of the application
is returned as the response. The HEAD method is similar to GET except that the server
returns only the meta information contained in the HTTP header of the response. The
Entity-Body is simply ignored. The POST method, on the other hand, tells the destination
server to accept the Entity-Body enclosed in the request as a new subordinate of the re-
source identified by the Request-URL. This method is especially useful if the <searchpart>
of the URL becomes too long. In this case the <searchpart> should be included in the
optional Entity-Body, since some systems limit the maximum URL length.

A HTTP/1.0 compliant Full-Response message is shown in Table 2.6.

18CR = ASCII character decimal 13: carriage return
19LF = ASCII character decimal 10: linefeed
20SP = ASCII character decimal 32: space

62 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

Full-Response = Status-Line
*(General-Header | Response-Header | Entity-Header)
CRLF
[Entity-Body]

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Table 2.6: Syntax of a full HTTP response

The Status-Line of the HTTP response consists of the protocol version followed by a
numeric status code and its associated textual phrase. The Status-Code is intended for
use by programs whereas the Reason-Phrase is intended for the human user. The first
digit of the Status-Code defines the class of response code (see Table 2.7). The optional
Response-Header again allows the server to pass additional information about the response
and the server itself to the client.

Code Description

1xx : Informational Reserved for future use
2xx : Success Request was successfully received, accepted and processed
3xx : Redirection Further action must be taken in order to complete the request
4xx : Client Error Request caused a syntax error or cannot be fulfilled
5xx : Server Error Server failed to fulfill an apparently valid request

Table 2.7: Categorization of HTTP Status-Codes

The Entity-Body is optional in both the Full-Request and the Full-Response. The
Entity-Header defines meta information about the Entity-Body or, if no body is present,
about the resource identified by the request URL. The most important entity header field is
the Content-Type. It indicates the media-type of the data sent within the Entity-Body.
The Content-Type header field is defined as shown in Table 2.8.

Content-Type = Content-Type: media-type
media-type = type / subtype *(; parameter)
parameter = attribute = value

Table 2.8: Syntax of the Content-Type header field

Further details about currently specified media-types are defined in [RP94]. Two examples
are provided to illustrate the use of the Content-Type field:

• Content-Type: text/html

2.4. APPLICATION LAYER PROTOCOLS 63

The data in the Entity-Body are textual by nature and in particular HTML encoded.
This is the standard content type for HTML documents.

• Content-Type: application/webaudio

The application media-type indicates that the data are destined for an external
application and in particular WebAudio here. If an application is registered with
a certain content-type, the client launches the application upon receipt of the this
content-type within the response Entity-Header.

2.4.1.4 Shortcomings

An obvious flaw of HTTP/1.0 comes from the requirement that a new TCP connection must
be established for every single request-response. This not only makes the performance suffer
from the delay introduced by TCP’s three-way-handshake during connection establishment,
but also from the fact that current implementations of TCP deploy the slow start algorithm
(see section 2.2.2 for more information on TCP). Since slow start is always applied at the
beginning of the communication on a new TCP connection, the performance of the request-
response delivery suffers greatly. A simple solution to this problem is to support persistent
connections which are kept alive for multiple transaction. Moreover, from a network point
of view it need to be noted that the shortcoming of establishing a new TCP connection for
every HTTP request makes the Web transfer less responsive to network congestion. TCP’s
congestion control mechanisms are less effective for short-lived connections.

Another problem with respect to the protocol overhead is that HTTP is stateless. The
server has no recollection of data types and properties used by the client from one request
to another. Therefore, all information must be re-transmitted in every request. This is
particularly a problem if HTTP is used for session control within multimedia streaming.
Every time a control command is sent, the client must send all information identifying a
session to allow the server that maintains the session state can associate the request with
the corresponding session. Incorporating a session id as part of the HTTP protocol headers
would be very useful (compare the RTSP protocol header section 2.4.2.3).

The performance problem mentioned above was one of the main issues that forwarded the
design of the next generation Hyper Text Transfer Protocol (HTTP/1.1) [F+97]. The new
protocol makes use of persistent connections between clients and servers. The connection
is established prior to the first request and kept alive for the transmission of subsequent
requests and responses. The new HTTP protocol also improves its predecessor with respect
to the support for hierarchical proxies and caches as well as “virtual hosting” (see also
[F+97]).

64 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

2.4.2 Real-Time Streaming Protocol

The Real Time Streaming Protocol (RTSP) [S+98b] is an extensible framework to control
delivery of real-time media data, such as audio and video.

2.4.2.1 Protocol Objectives

RTSP is designed as a signalling protocol for the establishment and control of one or more
time-synchronized streams of continuous media. A good comparison of RTSP with a real
world device is the VCR remote control. Like a VCR remote control, RTSP can be used
to start, stop, and pause selected media clips. This “Internet remote control” supports
operation to control both, live data feeds or stored media clips.

RTSP is often misunderstood to be a transport protocol. However, it is not involved in
the delivery process of the continuous streams itself. It provides a means to negotiate the
transport mechanism that should be for the media delivery. RTSP itself is independent of
any particular transport mechanism. All current Internet transport mechanisms, namely
UDP, TCP, and RTP-on-UDP are supported. The signalling channel of RTSP is also
independent of the transport protocol; both UDP and TCP are supported.

The basic protocol design is very similar in syntax and operation to HTTP/1.1 (see section
2.4.1). The benefits of this design decision are: first, many mistakes made in HTTP could
be avoided, and second, approved features of the HTTP implementation and the extension
mechanisms could be re-used.

In addition to the design properties described so far, RTSP can be characterized under the
following design features:

Multi-server capable: Streams of different media servers can be controlled simultaneously.
Synchronization is performed at the application level, for example, by means of RTP.

Proxy and firewall friendly: Since RTSP has inherited the protocol format of HTTP, only
a few simple modifications to proxy and firewall systems enable the proper handling
of RTSP signalling within these systems. In addition, by parsing the SETUP method,
firewalls could easily find out the transport ports used by the media streams and open
“gates” for the respective media traffic.

Supports load balancing: RTSP can redirect requests to achieve load balancing on the
media servers.

Capability negotiation: A priori negotiation of the supported capabilities can be deployed.

Secure: RTSP can make use of the Web security mechanisms (for example, HTTP au-
thentication).

2.4. APPLICATION LAYER PROTOCOLS 65

Extendable: New methods and parameters can be easily added to the protocol.

Easy parsable: Only few changes are required to make standard HTTP parsers RTSP
compatible. This is also due to the similarity of the protocol formats.

Presentation description neutral: The protocol is not fixed to a particular presentation
description format.

High time accuracy: RTSP is suitable for professional applications (for example, remote
digital editing) due to support of time stamps with frame-level accuracy.

The main functionality offered by RTSP for media session control can be summarized as
follows:

Retrieval of media data from media server:

During start up clients may request a presentation description via HTTP or some
other mechanism to get information about the available media streams (if not al-
ready known). The presentation description file a specification of the individual
media streams (identified by RTSP URLs) including their encodings, language, and
other parameters that enable the client to choose the most appropriate combination
of media streams. In the case of multicast media streams the presentation descrip-
tion includes the multicast addresses of the presentation. Otherwise, if the media
presentation is sent via unicast, the client provides the destination (for security rea-
sons). Based on the presentation description, clients can initialize and control the
presentation using the adequate RTSP requests.

Invitation of a media server to a conference:

A media server can be “invited” to join an existing conference in order to play back
additional media or to record the media streams of a ongoing presentation.

Addition of media to an existing presentation:

RTSP servers are capable of notifying clients if new media streams are becoming
available. This is especially useful for live presentations.

2.4.2.2 Methods and States

Sophisticated stream control requires operations to setup, play, record, pause and stop
media streams. Since some control operations, such as play or record are not momentary
by nature, but require continuous processing, the RTSP server must maintain session state.
Server-side session state offers also a means to check the validity of control requests. A
pause control request, for example, is only sensible if the stream is either played or recorded.

66 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

The RTSP server generates a session id which is assigned to a new session during the
initial setup. The session id serves as a unique identifier for the session and is used
to reference the newly allocated session state within the server. All subsequent RTSP
requests and responses include the session id as an session identifier in their protocol
header. Upon an RTSP request or response, the server or client can easily identify the
session to which the control request or response is associated.

RTSP methods which have an impact on the server-side state of a stream described here:

SETUP causes the server to allocate resources for the session state. If successful, RTSP
changes to Ready state; otherwise, it keeps the initial Init state.

PLAY and RECORD starts data transmission or reception of a stream already initialized via
SETUP. If successful, the RTSP state switches to either Play or Record state.

PAUSE temporarily pauses a stream without freeing the stream’s state resources. It causes
the state to change back to Ready again.

TEARDOWN finishes an RTSP session and frees resources associated with it. Afterwards
RTSP remains in Init state.

Table 2.9 gives a brief overview of all methods specified within RTSP.

2.4.2.3 Message Formats

RTSP requests contain mainly the method which should be applied to the resource, the
identifier of the resource (RTSP-URL), and the protocol version. See Table 2.10 for the
complete message format:

RTSP URLs

RTSP uses so called RTSP URLs to uniquely identify presentations descriptions or media
stream within the global Internet. The format is similar to the format of HTTP URLs (see
section 2.4.1.1).

(rtsp|rtspu)://<host>[:<port>]/<path>

According to the RTSP URL format, RTSP supports two basic URL types. The first type,
namely rtsp, requires that RTSP signalling (not the data stream) is issued via a reliable
transport protocol (currently only TCP in the Internet) while the second type, namely
rtspu, specifies an unreliable protocol (currently UDP). If no port is specified, the default
RTSP port 554 is assumed.

An example RTSP URL might look like:

2.4. APPLICATION LAYER PROTOCOLS 67

Method Description Direction Req.

OPTIONS Requests a list of the supported C ↔ S required
of the RTSP service

SETUP Initializes a new RTSP session (e.g. C → S required
defines transport mechanism); also used to
change transport parameters

PLAY Starts the playback of a media stream C → S required
TEARDOWN Stops the stream delivery and frees the C → S required

resources of the stream state
PAUSE Halts the delivery of the media stream, C → S recomm.

but keeps the session state
DESCRIBE Retrieves the presentation description C → S recomm.

identified by the request URL
RECORD Starts recording a media stream C → S optional
ANNOUNCE Posts the description of a presentation C ↔ S optional

to a server or updates a session
description at the client

REDIRECT Redirects a client to a different server S → S optional
GET PARAM Retrieves the value of a C ↔ S optional

presentation or stream parameter
SET PARAM Set the value of a presentation or C↔ S optional

stream parameter

Table 2.9: Overview of RTSP methods, their direction and requirement

Request = Request-Line
*(General-Header | Request-Header | Entity-Header)
CRLF
[Message-Body]

Request-Line = Method SP RTSP-URL SP RTSP-Version CRLF

Method = GET | HEAD | POST | extension-method

Table 2.10: Syntax of an RTSP request

rtsp://audioserver.comp.lancs.ac.uk:1554/liveaudio

Like the RTSP request, the RTSP response (see Table 2.11) is also very similar to the
HTTP response format. Besides the RTSP-Version some Status-Codes were changed to
express the failure of RTSP processing (see [S+98b] for details). The categorization of the
status codes is identical to HTTP as shown in Table 2.7.

68 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

Response = Status-Line
*(General-Header | Response-Header | Entity-Header)
CRLF
[Message-Body]

Status-Line = RTSP-Version SP Status-Code SP Reason-Phrase CRLF

Table 2.11: Syntax of an RTSP response

An example of a SETUP request and its response in the case of a successful operation is
shown here:

Request (C → S):

SETUP rtsp://audioserver.lancs.ac.uk/liveaudio RTSP/1.0

CSeq: 302

Transport: RTP, unicast, client port=4588-4589

Response (S → C):

RTSP/1.0 200 OK

CSeq: 302

Transport: RTP, unicast, server port=6256-6257

Session: 234303923

2.4.2.4 Relations to Other Protocols

This sections discusses the relationship between RTSP and several other protocols that
interact with RTSP.

RTSP clearly distinguishes between stream control and conference initiation. Although it
supports invitations of servers to play (or record) a stream into (of) a presentation, RTSP
is no means intended to be a conference initiation protocol. In order to invite an RTSP
server to a conference, session protocols like the Session Initiation Protocol (SIP) [H+98]
or H.323 [H.396] can be used. Both are control protocols to setup, maintain or terminate
multimedia conferences with one or more participants.

As mentioned earlier RTSP has much in common with HTTP and especially with respect
to the protocol format and basic operation. It may also interact with HTTP such that
the stream presentation description is retrieved by means of HTTP rather than using the
DESCRIPTION method recommended by RTSP. The close relationship to HTTP benefits
RTSP requests when they pass proxies, firewalls, tunnels and caches. They can be processed
similarly to HTTP requests as described in [F+97].

On the other hand, RTSP differs in several important aspects from HTTP:

2.4. APPLICATION LAYER PROTOCOLS 69

• RTSP servers maintain session state information unlike HTTP which is stateless by
nature.

• RTSP is a symmetric protocol where both, clients and servers can issue requests,
whereas HTTP is asymmetric (only clients issue requests).

• In RTSP data streams are carried out-of-band by a different protocol (for example,
UDP, TCP, or RTP/UDP). HTTP, in contrast, carries the payload in-band.

• RTSP provides a different and a more comprehensive set of methods.

Furthermore, RTSP is not tied to any specific transport protocol. Although studies have
shown that most real-time media streaming applications use RTP-on-UDP as a transport
protocol, UDP or TCP can also be deployed as data delivery mechanism.

Finally, RTSP requires a presentation description format which can express both static and
temporal properties of a presentation containing several media streams. The description
format of choice here is the Session Description Protocol (SDP) [Han98]. It is especially
designed to describe multimedia sessions for the purposes of session initiation and control.

2.4.3 Summary

This section compares the application level protocols HTTP and RTSP and discusses their
usability as stream control protocols. Table 2.12 summarizes the main similarities and
difference of these protocols.

Criterion HTTP RTSP

Extensible protocol + +
Transaction-oriented + +
Flexible request format + +
Extension mechanisms + +
Symmetric - +
Maintains state - +
Redirect requests - +
Transport protocol TCP TCP, UDP
Client available + -

Table 2.12: HTTP or RTSP: How useful are they for session control?

Although HTTP is mainly used within the WWW for the purpose of information retrieval,
it can also be used for stream control ends. The fact that HTTP requests are freely
extendable by means of the <searchpart> mechanism (see section 2.4.1.1), stream control
operations that are not really supported by HTTP, such as play, pause, stop, etc., can be

70 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

emulated. The following example shows how simple RTSP requests can be emulated by
HTTP.

RTSP request:

PLAY rtsp://server/audio RTSP/1.0

Range: npt=0-

...

HTTP request:

GET http://server/audio?METHOD=PLAY&RANGE=npt=0- HTTP/1.0

...

The lack of the notion of a session within standard HTTP makes the mapping between
single HTTP requests and the session to which the control request should be applied more
tricky. One simple mechanism is to use the source IP address to identify the session. This,
however, limits the stream control to a single session per IP address. The transport port
of the connection cannot be used since usually multiple connections are establish during
the lifetime of a session. Alternatively the client could simply add the transport port to
every RTSP request. RTSP, on the other hand, uses a session id field in the protocol
header which uniquely identifies the session.

Another difference between HTTP and RTSP is that HTTP is limited to use the reliable
transport protocol TCP within the Internet whereas RTSP is independent of the trans-
port protocol. It can deploy UDP for its request-response messages instead. Correlation
ambiguities among request-response pairs are resolved by means of the message sequence
counter called CSeq.

The main advantage of RTSP over HTTP is that RTSP is a symmetrical protocol. Thus,
the server can also initiate communication. This enables RTSP to invite media servers and
to add media streams to active presentations. Both operations require the server to actively
send a request and thus cannot be done with HTTP. Server-initiated communication also
enables server redirection. Servers are capable of forwarding a client request transparently
to another server. This capability facilitates server-based load balancing.

Even though this comparison shows that RTSP is clearly the more sophisticated stream
control protocol, and hence, preferable in cases where the whole range of control function-
ally is required, simple HTTP-based stream control has the advantage that existing HTTP
user agents (such as standard Web browsers) can simply be used as clients. Basic control
functionality can very easily be encoded in HTTP URLs.

2.5. SUMMARY 71

2.5 Summary

This section concludes the study on Internet multimedia protocols presented throughout
this chapter. The study examines the most important protocols currently used within
Internet multimedia applications and explores their usability within interactive real-time
media streaming in the Internet.

The network layer protocol IPv6 is compared with its predecessor IPv4. Besides resolving
the address problem, the benefits of the new Internet protocol regarding interactive real-
time streaming can be summarized as follows: (1) IPv6 improves the packet processing in
every intermediate router due to simplification of the IP header. This has the potential to
decrease the overall network load and to reduce the end-to-end delay of real-time streaming
simply due to faster packet processing in each intermediate router. (2) IPv6 provides
native multicast and security support which facilitates media broadcast and secure data
transmission within streaming applications. (3) The IPv6 flow label, which introduces the
concept of a flow, resolves the implicit layer violation problem of RSVP and has a great
impact on the performance of packet classification (see section 5.3). Although IPv6 has the
potential clearly to improve real-time streaming applications, it does not magically resolve
the QoS problems of Internet communication.

The transport protocols and streaming mechanisms discussed are: UDP, TCP and RTP-
on-UDP. Whereas TCP is not suitable for interactive real-time streaming applications
because of the interference of its congestion control and reliability mechanisms with the
requirements of time-critical applications, UDP provides a simple but sufficient service.
RTP-on-UDP is recommended as the streaming mechanism for real-time applications be-
cause it adds valuable stream information to the media packets. RTP’s control protocol
RTCP is especially useful in conjunction with server-site adaptive mechanisms due to the
QoS feedback channel. Even though RTP provides only a protocol header for application
level streaming information – therefore misleadingly called a transport protocol – it is still
useful since most real-time streaming applications require this information within each
packet. Thus, the application level protocol assists application developers in designing
media streaming applications, and more important, it provides a generic or standardized
streaming mechanism which encourages inter-operation of different applications.

The resource reservation protocols RSVP and YESSIR are discussed. Even though RSVP
is currently the resource reservation protocol of choice within the IETF, it has several
significant drawbacks: (1) The periodic PATH and RESV messages and the per flow PATH
and RESV state within network routers do not scale successfully in the core of the network.
(2) Due to the lack of acknowledge messages, RSVP has a very slow establishment time if
initial PATH or RESV messages are lost. (3) The protocol overhead due to the periodic
messages which are required to maintain the soft-state is significant. (4) RSVP is not a
reliable reservation protocol, since it is dependent on the underlying routing protocol. An
“unnecessary” route change, for example, might cause an application to lose its reservation.
The simple and light-weight reservation protocol YESSIR, in contrast, is not a network level

72 CHAPTER 2. INTERNET MULTIMEDIA PROTOCOLS

reservation protocol. The signalling is simply based on top of the application level protocol
RTP/RTCP and hence can only account for very limited reservation services. The lack
of a routing interface prevents YESSIR from quickly establishing new reservations when
route changes occur. A reservation along the new path is set up based only on the periodic
refresh messages. Since the feedback period of RTCP for small groups is very short, the
protocol overhead is significantly higher than in the case of RSVP. As a result, RSVP is
recommended as the resource reservation protocol within real-time streaming applications.

The application level protocols HTTP and RTSP are discussed and evaluated for use in
stream control. RTSP is a sophisticated stream control protocol with similar functionality
to a “VCR remote control”. It provides sufficient control functionality for stream control
and is therefore recommended for use within media streaming applications. The stream
control functionality of RTSP is clearly separated from the session description, as provided
by SDP, and the session initiation, as supported by SIP or H.323. It is, however, intended to
be used in conjunction with these protocols. Whereas RTSP based stream control requires
special RTSP capable clients, HTTP based stream control can simply be accomplished
by means of standard Web browsers. The standard Web protocol HTTP, however, can
only account for simple stream control. The lack of session or stream semantics limits
its usability. Although HTTP could be easily extended in order to provide equivalent
functionality to RTSP, it would then lose its main advantage, namely that stream control
can be achieved simply by means of a standard Web browser. Since RTSP is designed
similarly to HTTP, an RTSP control interface can be easily extended to provide a service
also for the simple control based on HTTP.

One can conclude that current real-time audio streaming applications should be devel-
oped considering the following design recommendations:

• IPv6 has several benefits compared to IPv4 with respect to network QoS and
group communication.

• UDP should be used as transport protocol.

• RTP is a useful application level protocol which facilitates media streaming. In
conjunction with its feedback mechanism RTCP, RTP encourages adaptive mech-
anisms based on QoS feedback.

• RSVP, the network level resource reservation protocol, is preferred over the light-
weight application level reservation mechanism YESSIR for resource reservation.

• RTSP is a comprehensive stream control protocol. HTTP is sufficient for simple
stream control. Both protocols can easily co-operate within a multi-protocol
interface.

Chapter 3

Real-Time Streaming in the Internet

This chapter discusses various application level techniques that are used to compensate
for the lack of network QoS and explores current network level QoS models which aim at
improving the usability of real-time media streaming applications within the Internet.

Current Internet researchers have not yet come to an agreement on how to achieve QoS for
these applications in the network. Some believe that the QoS in the network depends only
on the amount of available bandwidth. Hence, they propose simply to increase the amount
of bandwidth to resolve the QoS problems. Temporary bottlenecks or momentary service
degradations could be overcome by means of adaptation (see 3.1.3). On the other hand,
others think that the network should rely on resource management mechanisms in order to
guarantee QoS to the user. Resource reservation is one mechanism to achieve guaranteed
service for real-time media streaming applications.

Section 3.1 describes several application level techniques to improve the quality of simple
best-effort based network communication. Section 3.2 network level QoS mechanisms that
are being currently discussed.

3.1 Application Layer QoS

This section describes several application level mechanisms that are worth considering
when developing real-time streaming applications for the Internet. These techniques are
designed to achieve higher quality application services to increase end-user satisfaction.

3.1.1 Packet Transfer

With respect to packet transfer, interactive real-time streaming applications have a choice
of transport mechanisms, packet sizes and packet transmission techniques that are consid-
ered here.

73

74 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

Choice of Transport Protocol

Among current transport protocols in the Internet, namely UDP (see section 2.2.1) and
TCP (see section 2.2.2), the former should be used when real-time behavior is required.
According to the discussion in section 2.2.4 TCP has several drawbacks for use with time-
critical traffic. First, to achieve the reliability provided by TCP, retransmission and buffer-
ing are unavoidable. Both techniques, however, introduce additional and intolerable delay.
Second, real-time media streaming applications need to control their transmission rate
rather than leaving this responsibility to a transport protocol that is not aware of QoS.
The slow start algorithm, for example, prevents applications that use TCP from transmit-
ting with the data rates dictated by the live media sources.

As a result current real-time streaming applications use primarily the simple connection-
less protocol UDP as their transport protocol. It allows application to freely control their
transmission rate. Moreover, if real-time streaming applications want to benefit from the
multicast capabilities of the MBone or IPv6 for group communication, they are currently
limited to the use of UDP as their transport protocol.

In the case of real-time streaming the streaming mechanism of choice is currently RTP-
on-UDP (see section 2.2.3). RTP on top of UDP adds useful streaming information, such
as timestamps, session id, sequence numbers, etc., to the data packets. RTP’s feedback
channel, namely RTCP, can be used to send QoS information back to the sender. The QoS
feedback is especially valuable if adaptation (see also section 3.1.3) is deployed within the
sender applications.

Packet Size

Besides the appropriate choice of transport protocol the packet size used to transmit media
streams plays an important role with respect to the end-to-end transmission delay.

In the case of audio or video streaming the payload size is usually a multiple of the media
frame size. Audio, for example, is read from the audio device in chunks called audio
frames. The number of audio samples contained within an audio frames depends on the
device configuration. If the end-to-end delay must be minimal, as in the case of interactive
real-time applications, the frame size should be small and the payload should encompass
as few frames as possible in order to minimize the packetization delay. Typical live audio
applications use frames that encompass 20 or 40 ms of audio data.

The FrameSize is determined by the audio format captured from the sound device. Equa-
tion 3.1 shows how to calculate the FrameSize in general. For example, the encoding of
40 ms of 4 kHz monophonic audio1 in 16 bit samples results in a FrameSize of 640 bytes.

1Sampling of 4 kHz audio demands a sampling rate of 8 kHz.

3.1. APPLICATION LAYER QOS 75

FrameSize = Channels × SampleSize × SampleRate × T ime (3.1)

The packet payload size is determined by the number of frames sent per packet and the
compression or encoding scheme (see equation 3.2). For example, if we consider packets
carrying GSM encoded audio data of one mono, 16 bit PCM frame, the payload size results
into 65 bytes.

PayloadSizeGSM = Frames × (CompressionRate × FrameSize) (3.2)

In general, if sophisticated compression algorithms such as GSM, CELP, MPEG, etc., are
used to encode the media data, a payload size of only a few media frames is very small.
Transferring data packets with a payload size of size less than 100 bytes seems to be
inefficient considering that the packet headers in the case of UDP/IP or RTP/UDP/IP
transport is already of great size. Equation 3.3 presents the formular to calculate the
packet overhead.

Overhead =
HeaderSize

PacketSize
=

∑
Protocols Size(Header)∑

Protocols Size(Header) + Size(Payload)
(3.3)

Table 3.1 shows the packet overheads above the link layer of one mono 16 bit PCM frame
using uncompressed and GSM encoded audio. This illustrates that the overhead is highly
dependent on the transport and application protocols used. Although the packet overhead
for small audio packets is very high, the price must be paid if the end-to-end delay must
be minimal.

Transport Total PCM GSM
Mechanism HeaderSize PayloadSize Overhead PayloadSize Overhead
UDP/IPv4 28 bytes 640 bytes 4% 65 bytes 30%
RTP/UDP/IPv4 44 bytes 640 bytes 6% 65 bytes 40%
UDP/IPv6 48 bytes 640 bytes 7% 65 bytes 42%
RTP/UDP/IPv6 64 bytes 640 bytes 9% 65 bytes 50%

Table 3.1: Packet Overheads of different Audio Encodings and Transfer Mechanisms

To minimize Overhead, or in other words to maximize the network utilization, research in
the area of header compression [D+98b] suggests to transmit only the header information
subject to changes (for example, sequence numbers, timestamp, checksum, etc.). Thus,
the packet Overhead can be highly reduced.

76 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

Traffic Shaping

Another technique used to improve transmission quality with respect to packet transport
is called traffic shaping. The general principle of traffic shaping is to alter the traffic
characteristics of the outgoing stream of packets (or cells) on the virtual connection in
order to optimize the use of network resources.

In the past traffic shaping played an important role in the research of ATM cell switching.
The main schemes proposed by the ATM Forum and ITU are based on the Generic Cell
Rate Algorithm and are associated with the Constant Bit Rate (CBR) and Variable Bit
Rate (VBR) services.

In the Internet, as it is perceived today, packet losses are of bursty nature [B+97a] due
to queue overflows in end systems or intermediate routers. Therefore, applications for live
media streaming should shape the outgoing stream of packets such that the data packets
are transmitted isochronously over time rather than in bursts. Although fewer packet losses
are expected when applications apply traffic shaping to their data traffic, traffic shaping
within network nodes is much more effective.

3.1.2 Forward Error Correction

Forward Error Correction (FEC) developed for packet media streaming is a different ap-
proach to address the problem of packet loss within Internet communication.

While closed loop mechanisms, such as Automatic Repeat Request (ARQ) mechanisms, are
used to recover lost packets by means of retransmission, open loop mechanisms, such as
FEC mechanisms, transmit redundant information with the original media data so that lost
packets can be restored from the redundancy. ARQ mechanisms, however, are not suitable
to recover from packet loss if real-time data are streamed in wide-area networks, such as
the Internet. Retransmission introduces too much latency. In addition ARQ mechanisms
do not scale well when multicast is used.

Research at INRIA [BC95, BVG97] found that open loop error control mechanisms based
on FEC are adequate to reconstruct most lost packets of a media stream if packet losses
are isolated to some extent.

Most FEC mechanisms proposed in literature suggest sending “redundant” packets every
nth packet which is obtained by exclusive-oring the other n packets [SM90]. This mech-
anism allows to recover a single loss in an n packet message. It increases the data rate r
only by r

n
. But if a lost packet needs to be recovered, the receiver must wait for the next

“redundant” packet. Thus, the mechanism significantly increases the average end-to-end
delay when losses are frequent.

The FEC mechanism developed at INRIA especially addresses the problem of consecutive
packet losses. The idea is to add highly compressed copies of the previous k frames to the

3.1. APPLICATION LAYER QOS 77

current media stream packet. If packet n (where n is the packet’s sequence number) is lost,
any of the following packets n+1, n+2, ... or n+k must be successfully received. Thus, up
to k successive packet losses can be tolerated since low quality substitutes are available. The
optimal choice of k is a trade off between the momentary probability of consecutive packet
losses in the network and the available bandwidth. The increase of the data rate caused
by the redundant information depends on the compression schemes. If low-bandwidth
encoders are used for the “redundant” frames, the data rate increases only slightly even
if k is set to several frames. However, introducing too much redundancy increases also
the data rate which in turn might have a negative impact on network congestion and thus
reliability.

In the case of real-time streaming the maximum value for k is mainly limited by the
maximum end-to-end delay boundary. In addition to the processing delay of the FEC
encoding and decoding, this mechanism adds at least k frame delays to the end-to-end
delay. The value for k must be chosen carefully in order to prevent the additional delays
from causing the recovered packet to arrive too late and thus being “lost” anyway. This
approach has the advantage that the additional latency at the receiver depends entirely
on the amount of consecutive packet loss. If no packet loss occurs, no additional delay is
introduced. If only a single packet is lost, the recovery can be achieved as soon as the next
packet arrives. Thus, receiver latency increases with the number of successive losses.

Summarizing, one can conclude that FEC is an effective alternative to ARQ for providing
reliability with only a small increase of end-to-end delays when lost packets are isolated.
The effectiveness depends on the characteristics of the packet loss process of the network.

An analysis of packet losses in the Internet [BC95] shows that the probability of consec-
utive packet losses decreases with the number of lost packets in a sequence. Experiments
have shown, for example, that about 90% of the losses are in the range of 1 to 2 consec-
utive lost packets, whereas about 99% have less or equal than 3 consecutive lost packets.
Furthermore, the analysis shows that the probability for consecutive packet loss is highly
correlated with the current network load. For example, the average loss gap measured on
a 65% loaded network was about 1.2 packets, whereas on a network with 90% load an
average loss gap of about 2.8 packets was measured [BC95].

As a result one can conclude that under low or moderate network load, FEC operates well
since packet loss occurs infrequently. Even under heavy network load, when consecutive
packet losses appear, FEC is capable of recovering most lost packets when multiple frame
redundancy is used. Since the likelihood of consecutive packet losses decreases with the
number of lost packets, FEC results in good performance. Furthermore, the effectiveness of
FEC can be highly improved if used in conjunction with traffic shaping (see section 3.1.1).
Both mechanisms are considered complementary since traffic shaping has the potential to
“isolate” packet losses whereas FEC resolves the problem of “isolated” packet loss.

78 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

3.1.3 Adaptation

Although recent developments within the IETF focus on QoS issues and discuss how to
provide QoS for packet-switched networks, such as the Internet, none of the QoS mecha-
nisms are widely deployed. Thus, today’s media streaming applications must still tolerate
variations in QoS (i.e. dynamic changes of delay variations, preserved throughput and
packet loss) delivered by the network.

Mechanisms to provide continuous service even when external conditions change (i.e. net-
work congestion, router queue overflows and processing overload) are commonly known
as QoS adaptation mechanisms. Adaptive applications are able to gracefully adapt their
service quality depending on the QoS received from lower-level services. Even severe ser-
vice fluctuations can be accommodated by means of QoS adaptation mechanisms. In such
cases, however, it is often appropriate to inform the application of the service degradation
so that it can adjust to the new QoS level [CCH92]. If the delivered performance violates
the negotiated QoS (for example, QoS reserved by means of RSVP), the user may choose
to take some remedial action (i.e. adjust application state to accommodate the current
load conditions, re-negotiate the flow’s QoS, disconnect from the service).

Application level QoS adaptation is mainly increasing or reducing the QoS properties of the
application depending on variations in the network QoS characteristics. Adaptation, for
example, changes the media stream (i.e. audio quality, encoding format), adds redundancy
to the stream, or adjusts the receiver buffer size (i.e. playout point estimation) to make
users think that their application have constant network service qualities. This trick,
however, works only as long as the “real” QoS provided by the underlying network is within
a certain range. If the “real” QoS degrades below the “adaptation limits”, adaptation
cannot operate properly anymore and the quality remains poor. An example of QoS
control for adaptive distributed multimedia applications is given in [GS95].

If the network supports QoS by means of resource reservation, applications have “guaran-
teed” resources for their media stream, and hence, need not adapt to changing network QoS
characteristics. Thus, in an environment where resource reservation is available, adaptation
is only of user-initiated nature.

In a recent comparison of best-effort versus resource reservation [BS98], it is pointed out
that adaptation mechanisms enable multimedia applications over simple best-effort net-
works to perform – from a user’s point of view – very similarly to applications that make
use of resource reservation. The utility or value that users derive from adaptive application
under moderate QoS conditions is almost equal to rigid applications with resource reserva-
tion support. Since adaption accounts only for limited service fluctuations, the remaining
question is to what extent applications can adapt; the comparison did not find an answer.

In summary we can conclude that adaptive applications significantly improve performance
under moderate to high network load. However, they can only account service degradation
to a certain level.

3.1. APPLICATION LAYER QOS 79

3.1.4 Receiver Buffering

Since the quality of real-time media depends mainly on timely delivery and play out of
the stream data, protocols and mechanisms must address the control of delay, jitter and
reliability in an integrated fashion.

Receiver buffering is required to compensate for delay variations, also called jitter, intro-
duced by the network and the processing in the end systems (see section 1.2.6). It is
also important to resolve the problem of erroneous data transmission, such as packet re-
ordering. The tasks of receiver buffering are to estimate the optimal playout delay, which
is required to compute the buffering time, and to manage the queuing of the received
packets until their playback point exceeds. The playback time for each packet is usually
determined by the timestamp assigned by the sender and an estimate of the network and
processing delay.

TP layback = TRecording + DNetwork + DProcessing (3.4)

The processing delay estimate DProcessing accounts only for the processing delay (i.e. de-
coding, decompression, scheduling) at the receiver. Since receivers cannot differentiate
the delay (or jitter) caused by the sender processing and the network, the network delay
estimate DNetwork determines the packet delay up to the receiver.

The playout delay can be constant throughout the entire session or can be adjusted adap-
tively during the session. Since end-to-end delays in the Internet vary significantly over
time [Bol93, S+97], a constant, and non-adaptive playout delay estimation performs badly.
Adaptive playout adjustment can be accomplished on a “per-talkspurt” or a “per-packet”
basis. In the context of packet audio the playout delay estimate for the first packet of a
talkspurt2 is crucial since it determines the playback time for all subsequent packets of
the talkspurt. It should be noted that playback gaps in the audio signal are immediately
recognized and perceived as disturbing crackles (compare section 1.3.1.3). In the case of
video streaming playout delay adjustment can be done on a “per-packet” basis if the video
and the audio are coupled only loosely, or if the video is played on its own. Human image
recognition does not notice small variations in the display time of individual frames.

As an example, the problem of playout estimation in the case of packet audio streaming
is discussed here. Figure 3.1 illustrates the problem of delay variations caused by the
network. The playout delay of the i-th packet dpi is the sum of the network delay di and
the buffering time bi.

di = ai − ti (3.5)

2Time interval that encompasses speech or music data rather than silence; transmission of silence is
usually suppressed to save bandwidth.

80 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

Receiver

t t2 nt1

a a

p p p
1 2 n

1 2

talkspurtsilence

. . .

. . .

. . .

time

time

time

arrival

playout

talkspurt

a n

late

Sender

Figure 3.1: Timings associated with individual packets and their talkspurts

bi = pi − ai (3.6)

dpi = di + bi = pi − ti (3.7)

The main problem of network delay estimation is in general that the sender and receiver
clocks are not synchronized, and hence, it is not trivial to calculate the absolute delay.
The delay variation required to estimate the playout delay, however, does not depend on
absolute times. The jitter of the i-th packet can simply be calculated as follows:

ji = |(ai − ai−1) − (ti − ti−1)| (3.8)

If packets would arrive in equal time intervals, meaning that packet jitter is zero, the audio
packets could be immediately played back on reception. However, since packets on store-
and-forward networks experience different transmission delays (ji > 0), receiver buffering
is an absolute necessity.

The calculation of the optimal playback delay has the competing goals of minimizing the
extra delay introduced by buffering while maximizing the number of packets arriving prior
to their playback time. Late packets that arrive after their playout point (pi < ai) are
regarded as lost. Increasing the playout delay or in other words the buffering time, to
prevent packets from being late, however, is not a good solution. Long playout delays
to compensate for extreme delay variations increase the total end-to-end delays and thus,
limit the usability of interactive real-time streaming applications.

3.1. APPLICATION LAYER QOS 81

3.1.4.1 Network Delay

In order to compensate for the jitter introduced by the network, receiver applications
need to know the current delay and delay variation of the network. Several methods for
network delay estimation (DNetwork) have been proposed [Mon83, AC+93, R+94, MKT98].
Network delay estimation is calculated either statically at the beginning of a session, or
dynamically by permanently adjusting the delay according to the instantaneous network
state. Buffering mechanisms that rely on dynamical delay estimation adapt the buffering
time to changing network delay variations.

Adaptation to delay changes in the network requires some form of filtering of past samples,
such as a low-pass filter modeled after the TCP round-trip time estimator. For wide-
area Internet transmissions the effects of sudden large changes in the delay, delay spikes,
can skew network delay estimates badly. The study in [R+94] develops a network delay
estimation algorithm that explicitly considers the phenomenon of delay spikes. Simulations
based on wide-area Internet audio traces have proved that this estimator performs better
than conventional buffering techniques without spike detection. A similar approach, used
in the mechanism presented in [MKT98], is designed to recover quickly from sudden delay
spikes and presents evidence of good performance.

An interesting relationship between buffering techniques simply controlled by the packet’s
transmission characteristic and open-loop error control schemes, such as FEC (see section
3.1.2), is documented in [D+94]. Generally, playout delay estimation based on the network
jitter only does not provide adequate service when error control is also an issue. Supporting
an open-loop error control scheme, such as FEC, requires modification of the receiver
buffering algorithms. It is suggested that applications use sufficient buffering times to
ensure with high probability that a copy of lost audio packets has arrived at the receiver
before its playback point exceeds.

3.1.4.2 Processing Delay

Delay variations are not only introduced while the packet is transferred on the network.
The receiving node, for example, introduces a so called processing delay when decoding,
decompressing, mixing, etc. the audio data. Since normal user workstations are the end
systems, process scheduling delay variations appear if non-real-time operating systems are
used (see section 1.2.6). As a result, buffering to compensate jitter caused by irregularities
in the process scheduling is required. These buffers, however, should not be controlled
by user processes, because these processes clearly cannot compensate for scheduling delay
variations. Therefore, audio devices usually provide special buffers for this purpose. Since
scheduling delays usually do not vary greatly, these buffers can by fairly small.

The processing delay estimation (DProcessing) depends entirely on the end-node’s operating
system. The accuracy with which the scheduling delay variation can be measured depends

82 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

mainly on the timer accuracy, whereas the accuracy of the exact playout time of the sched-
uled packets depend on the operating system’s scheduling granularity and, in particular,
the minimum scheduling unit3 of processes. Dynamic adjustment of the delay is preferable
to static delay estimation, especially if the scheduling delay varies with different processing
loads.

3.1.4.3 Summary

Summarizing one can conclude that receiver buffering, in order to compensate for the
network delay variations and, less critically, to make up for the processing delays, plays
an important role in media streaming application. In the context of real-time streaming,
however, buffering delays should be as small as possible to minimize the total end-to-
end delay and as big as necessary to accomplish the required loss characteristics. In
general adaptive (dynamic) buffering delay estimations are preferable over simple (static)
buffering mechanisms since “optimal” playout delay estimation depends highly on the
network dynamics.

3.1.5 Summary

This section summarizes the analysis of application layer QoS mechanisms regarding their
usability and importance for interactive media streaming. The following application layer
techniques: packet transfer, forward error correction, adaptation and receiver buffering are
examined.

With respect to packet transfer, interactive real-time streaming applications have to con-
sider the following issues: First, for packet transfer RTP-on-UDP provides the best trans-
port and streaming services among current Internet protocols. Second, the packet size
used for media streams has the following tradeoff: it should be as small as necessary and
as large as possible. Interactive streaming applications should use 1 at the most 2 media
frames per packet to minimize packetization delay. Non-responsive streaming applications,
in contrast, are recommended to use higher payloads in order to minimize packet overhead.
Third, interactive real-time streaming applications are advised to “shape” their data traf-
fic such that media packets are sent isochronously over time rather than in bursts. This
has the potential to reduce packet loss rates since the likelihood of packet clustering is
minimized.

Packet-based forward error correction mechanisms that are capable of correcting several
consecutively lost packets provide good service for interactive real-time streaming in the
Internet. Since the number of consecutively lost packets is usually small (in the order of 1

3Current operating systems have scheduling units of the order of 0.1 ms.

3.2. NETWORK LAYER QOS 83

to 3 packets), these FEC mechanisms are effective within Internet communication. Packet-
based FEC used in conjunction with traffic shaping, that isolates packet loss, improves the
effectiveness.

The general technique of adaptation that adjusts the operation of an application depending
on the QoS provided by the network is very effective within Internet real-time streaming.
It has been shown that even quite severe service fluctuations can be accommodated by
means of adaptive mechanisms. However, adaptation is limited to only compensate for
QoS degradations of deterministic bounds. Since resource reservation mechanisms are not
yet supported in most parts of the Internet, application level adaptation is absolutely
necessary within real-time streaming.

Receiver buffering in order to compensate the network jitter and the jitter introduced by
processing irregularities in the sending host is crucial for Internet communication if no hard
QoS guarantees are granted. Adaptive buffering time estimation is beneficial since the net-
work QoS characteristics change permanently in the Internet. Moreover, buffering within
the sound device is necessary to compensate the jitter introduced by process scheduling
within the receiver node. To minimize the buffering at the sound device, adaptive buffering
mechanisms, that adjust their operation based on the measured scheduling jitter, are pre-
ferred. In general, one can conclude that adaptive (dynamic) buffering delay estimations
are preferable over simple (static) buffering mechanisms since “optimal” buffering time
estimation depends highly on the jitter dynamics.

3.2 Network Layer QoS

This section introduces various different network layer mechanisms to achieve network
level QoS or differentiated QoS classes in the Internet. First, techniques that are com-
monly called service differentiation mechanisms are introduced; in particular, the IETF’s
Differentiated Service architecture is presented in section 3.2.3. Second, a network service
that provides QoS guarantees based on resource reservation is explored. This network
service or QoS framework is known as Integrated Services (see section 3.2.5).

3.2.1 Relative Priority Marking

Relative priority marking is a service differentiation mechanism that aims at providing QoS
to real-time media streaming applications.

An examples of the relative priority marking model is IPv4 precedence marking [Pos81]. In
this model the application, host or proxy node selects a relative priority or “precedence” for
a packet (i.e., delay priority or discard priority), and the network nodes along the delivery
path apply the appropriate priority forwarding behavior corresponding to the priority value
within the packet’s header.

84 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

The problem of these simple priority mechanisms is to prevent the application from marking
all packets with the highest priority. For example, file transfer applications (such as FTP)
that are not time critical compared with real-time applications could also improve their
performance simply by marking packets as high-priority. In general most applications
perform (much) better, if higher priorities are given to their data traffic.

In addition, since packets are marked individually without reference to their end-user
nodes or applications, accounting for QoS provided to a certain customer cannot be done
on shared networks within this model; semantics for end-to-end service, such as flows are
lacking.

The Differentiated Service architecture, described in section 3.2.3, can be considered to
be a refinement of this simple model. It emphasizes the role and importance of boundary
nodes and traffic conditioners and introduces an enhanced per-hop behavior model that
permits more general forwarding behaviors than relative delay or discard priority.

3.2.2 Service Marking

Service marking, which is a very similar idea to relative priority marking, is another mean
to support some form of QoS. The IPv4 Type of Service (ToS) [Alm92] and the IPv6 Traffic
Class are examples of a service marking model in the Internet.

Each packet is marked with the desired ToS. The ToS is defined by means of one or a set
of the following service requests: “minimize delay”, “maximize throughput”, “maximize
reliability” or “minimize cost”. Network nodes are responsible to select routing paths or
forwarding behaviors that are suitably engineered to satisfy the service request.

This service model is slightly different from the Differentiated Service (DiffServ) architec-
ture (see section 3.2.3), because DiffServ does not use the ToS or traffic class field as an
input for the routing decision. Also, the ToS markings, as defined in [Alm92], are very
generic and do not span the range of possible service semantics. Service marking does not
easily accommodate new services types (since the header field is small), and new types
would involve changes in the configuration of “TOS → forwarding behavior” associations
in each network node. Moreover, in service marking, requests can only be associated with
individual packets whereas DiffServ also supports aggregate forwarding behavior for a se-
quence of packets. Another disadvantage of service marking over DiffServ is that it implies
standardized services offered by all network providers. This, however, should be outside
the scope of the IETF and left to the network providers themselves.

3.2.3 Differentiated Services

Differentiated Services (DiffServ or DS) [B+98], a scalable architecture for service differ-
entiation in the Internet, is currently being discussed within the IETF.

3.2. NETWORK LAYER QOS 85

This architecture achieves scalability by implementing complex classification and condi-
tioning functions only at network boundary nodes, and by applying Per-Hop Behaviors
(PHB)4 to aggregates of traffic which have been appropriately marked using the DS field5

in the IP headers. The difference to other service marking models is mainly that the service
classes are not limited to a pre-defined standard, but are rather flexible.

Packets are classified and marked to receive a particular per-hop forwarding behavior on
nodes along their path. Therefore, sophisticated classification, marking, policing and shap-
ing operations need to be implemented at network boundaries or end-user hosts. Network
resources are allocated to traffic streams by service provisioning policies that determine how
traffic is marked and conditioned upon entry to a differentiated services-capable network,
and how this traffic is forwarded within that network.

PHBs are defined to permit a reasonably granular means of allocating buffer and bandwidth
resources at each node among competing traffic streams. As a result per-application flow
or per-customer forwarding state, that limits scalability, does not need to be maintained
within the core of the network. Service provisioning and traffic conditioning policies are
sufficiently decoupled from the forwarding behaviors within the network interior to permit
implementation of a wide variety of service behaviors, with room for future expansion.

3.2.3.1 Service Model

The differentiated services architecture is based on a simple model where the traffic entering
a network is assigned to a service class. Each service class (or behavior aggregate) is
identified by a single DS code-point6. Within the core of the network packets are forwarded
according to the per-hop behavior associated with the DS code-point.

The key components of the differentiated service architecture are described here.

Domains and Regions A Differentiated Service domain (DS domain) is a contiguous
set of DS nodes that operate with a common service provisioning policy and a set of PHB
groups implemented on each node. DS domains have well-defined boundaries consisting
of DS boundary nodes that classify and possibly condition ingress traffic to ensure that
packets which transit the domain are marked appropriately to select a PHB from one of
the PHB groups supported within the domain. Normally DS domains consist of one or
more networks under the same administration; for example, an organization’s Intranet or
an ISP. The domain administration is responsible for ensuring that adequate resources

4The externally observable forwarding behavior applied at a DS-compliant node to a DS behavior
aggregate.

5The ToS field of the IPv4 header or the Traffic Class of the IPv6 header when interpreted in confor-
mance with the DiffServ architecture.

6A specific value of the DS field that is used to select a PHB.

86 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

are provisioned and/or reserved to support the domain’s service levels. Since non-DS-
compliant nodes within a DS domain may result in unpredictable performance and may
impede the ability to satisfy the desired service levels, such nodes should be avoided within
DS domains.

A Differentiated Services region (DS region) is a set of one or more contiguous DS domains.
DS regions are capable of supporting differentiated services along paths that span the
domains within the region. The DS domains within a DS region may support different
internal PHB groups and different “code-point → PHB mappings”. However, to permit
services that span across the domains, the peering DS domains must establish a peering
service level.

DiffServ enabled node

Classifier
PacketData

Path Marker
Packet Shaper /

Dropper

Meter

Figure 3.2: DiffServ Packet Classifier and Traffic Conditioner

Traffic Classification and Conditioning Differentiated services are extended across
a DS domain boundary by establishing a Service Level Agreement (SLA)7 between an
upstream network and a downstream DS domain. Briefly, the SLA specifies packet classifi-
cation and re-marking rules. The packet classification policy identifies the subset of traffic
that may receive a differentiated service by being conditioned and/or mapped to a behav-
ior aggregate. The inter-operation of the traffic classifier and conditioner is illustrated in
Figure 3.2. A traffic stream is selected by a classifier that steers the packets to a logical
instance of a traffic conditioner. A traffic conditioner may contain the following elements:
meter, marker, shaper and dropper. A meter is used (where appropriate) to measure the
traffic stream against a traffic profile. The state of the meter with respect to a particular
packet (for example, whether it is in- or out-of-profile) may be used to affect a marking,
dropping or shaping action. Thus, traffic conditioning performs metering, shaping, policing
and/or re-marking to ensure that the traffic entering the DS domain conforms to the rules
of the domain’s service provisioning policy.

7A service contract between a customer and a (SLA) service provider that specifies the forwarding
service a customer should receive.

3.2. NETWORK LAYER QOS 87

3.2.3.2 Forwarding Behavior

The externally observable “forwarding behavior” applied to a particular service class of
a DS node is described within the node’s PHB. Per-hop behavior is defined in terms of
behavior characteristics relevant to service provisioning policies rather than in terms of a
particular implementation mechanism. PHBs can be specified by means of their resource
priority relative to other PHBs or in terms of their relative observable traffic characteristics.
Since PHBs are the means by which a node allocates resources to behavior aggregates, they
should be specified in groups that share common constraints applied to every single PHB,
such as a packet scheduling or buffer management policy. Multiple PHB groups may be
implemented on a node and utilized within a domain in order to support a wide variety of
different absolute and relative service classes.

3.2.3.3 Summary

DiffServ provides a simple QoS framework for the Internet without the stringent need
for changes in end-user applications and end systems. Even if only parts of the end-to-
end transmission path support DiffServ, the service operates well within these bounds.
Unlike end-to-end resource reservation mechanisms such as IntServ/RSVP, DiffServ does
not require that all network nodes along a delivery path support the service.

The DiffServ architecture has the potential to resolve the scalability problem of the IntServ
architecture in the core of the network, since no “per-flow” state is required within network
elements. In contrast, end-to-end QoS guarantees, as supported by IntServ, cannot be
accomplished. The fact that DiffServ depends on the resource allocation mechanisms
provided by “per-hop” behavior implementations, prevents DiffServ from offering end-to-
end service guarantees. Moreover, the lack of a reliable admission control mechanism
impedes DiffServ from offering reliable end-to-end resource promises. For example, in the
case of a route change there is nothing to prevent links from being overloaded. The lack
of admission control is the main reason why DiffServ is often deprecatingly considered to
be a simple service providing only a “better” and a “worse” best-effort service.

3.2.4 IP Label Switching

In IP label switching [R+98a], path forwarding state and traffic management or QoS state
are established for data streams on each hop along a network path. Traffic aggregates
of varying granularity (i.e. packets, cells, flows) are marked with a forwarding label and
associated with the corresponding label-switched path (or virtual circuit) at ingress nodes.
IP switches perform the lookup of a packet’s next-hop node, its per-hop forwarding behavior
and the replacement label at each hop based on the current forwarding label.

The label switching model permits finer granularity resource allocation to traffic streams
than, for example, service or priority marking, since label values are not globally significant

88 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

but are only meaningful on a single link. Therefore, resources can be reserved for the
aggregate of packets or cells received on a link with a particular label. The label switching
semantics allow traffic streams to follow a specially engineered path through the network
simply based on the forwarding label. This finer granularity comes at the cost of additional
management and configuration requirements to establish and maintain the label switched
paths.

IP label switching is generally a very efficient approach, especially if media streams are
long-lived (i.e. consist of many data packets). In this case, IP label switching is by far
more efficient than regular IP routing due to the simpler decision making process in the
network routers (or switches). If only few packets are transmitted (i.e. in the case of
short-lived media streams), however, the cost of setting up the switching paths might not
be worth. Since label switching can be processed very efficiently within network nodes, it
has the potential to improve delay sensitive applications such as interactive audio tools by
reducing the processing delays in every intermediate node.

The amount of forwarding state that must be maintained at each label switching node
scales in proportion to the number of participating end-user nodes of the network in the
best case (assuming multipoint-to-point label switched paths), and it scales in proportion
to the square of the number of end-user nodes in the worst case, when end-to-end label
switched paths with provisioned resources are employed.

As a result one can conclude that even though IP label switching is a very flexible and
efficient approach to improve the QoS in the network, it does not scale very well in the
core of the network, where IP switches have to cope with several thousand flows at a time.

3.2.5 Integrated Services

The IETF’s Internet Integrated Services (IIS or IntServ) [Wro97b, Wro97a, SPG97] archi-
tecture provides network level QoS by controlling the network delivery service. This enables
QoS sensitive applications to request their QoS desires by means of resource reservation
mechanisms.

3.2.5.1 The Framework

The Integrated Services framework provides the ability for applications to choose different
controlled levels of delivery service for their data packets. Before sending the data packets
applications use a reservation mechanism to establish the resource reservation for the data
stream. Different levels of QoS guarantees, namely soft and hard guarantees, are supported
within this framework.

In order to support resource reservation within the Internet two entities are required.
First, all network elements (IP routers) along the delivery path of an application’s data

3.2. NETWORK LAYER QOS 89

flow must support mechanisms to control and provide the QoS required by packets of the
reserved flow. This is called the QoS control service. Second, a protocol to communicate
the application’s QoS requirements to the individual network elements along the path and
to convey QoS management information between network elements and the application
must be provided. This is referred to as reservation setup mechanism.

In the IntServ architecture the QoS control is provided by either the controlled-load or
guaranteed service. Section 3.2.5.3 describes both QoS models in detail. The Resource
reSerVation Protocol (RSVP) is currently the mechanism of choice within the Internet for
reservation setup. Section 2.3.1 provides a detailed description of RSVP. Another resource
reservation mechanism that supports reservations within IntServ is called YESSIR (see
section 2.3.2 for details).

This memo emphasizes the clear line between the QoS control services provided by network
routers and the reservation setup mechanisms. A common misunderstanding is that RSVP
encompasses both functionalities. But, it is merely a protocol to communicate the QoS
requirements to the network nodes. Furthermore, the interfaces to the QoS control services
of IntServ are specified in a general manner, so that the services can be used in conjunction
with different reservation setup mechanisms.

3.2.5.2 Reservation Setup Mechanism

The reservation setup mechanism is responsible for establishing and maintaining the re-
source reservation along the transmission path.

In order to invoke the QoS control service within the network elements, several types of
data must be exchanged between the application and those network elements:

First, information generated at the sender, describing the data traffic (the sender TSpec) of
the sender application is carried to intermediate network elements and to the receiver(s).

Second, information generated or modified within the network elements and required at
the receivers to make reservation decisions, encompass the available services, delay and
bandwidth estimates, and operating parameters used by specific QoS control services.
The information is collected from network elements and carried towards receivers in so
called AdSpec messages. Rather than carrying information from each intermediate node
separately to the receivers, this information represents a summary, computed as it passes
each individual hop along the transmission path.

Third, information generated by each receiver, describes (a) the QoS control service re-
quired for the reservation (guaranteed or controlled load), (b) a description of the traffic
level for which resources should be reserved (the receiver TSpec), and (c) whatever param-
eters are required to invoke the service (the receiver RSpec). This information is carried
from the receiver(s) to intermediate network elements, and finally, if the reservations have
been installed successfully, to the sender in so called FlowSpec messages. The FlowSpec

90 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

describes the QoS parameters of a data flow, and if the resources are granted, it specifies
the resource reservation.

In order to associate a FlowSpec with a particular data flow, a FilterSpec is required. The
FilterSpec specifies the packets that can make use of the reserved resources (see Figure
3.3).

. FilterSpec
Sender Port
Sender Address

Maximum Packet Size [M]
Minimum Policed Unit [m]
Peak Data Rate [p]
Token Bucket Size [s]
Token Bucket Rate [r]

TSpec

Rate [R]

RSpec

Guaranteed Service
Controlled load or

Service Model

FlowSpec

Slack Term [S]

Figure 3.3: The IntServ Reservation Request Format: FlowSpec and FilterSpec

3.2.5.3 QoS Control Services

Service Models

Traditionally the Internet provides the same QoS to every data packet. This service is
known as simple best-effort service (see section 1.2.4). The network promises no boundaries
on delay, jitter or loss rates. It simply tries to deliver the packets as soon as possible.

Guaranteed Service

Guaranteed service [SPG97] provides firm bounds on end-to-end packet queuing delays.
It offers sufficient service for real-time streaming application with hard QoS requirements.
Guaranteed services make use of resource reservation mechanisms in order to provide fixed,
guaranteed bounds on end-to-end delay and jitter. Guaranteed service does not explicitly
minimize the jitter. It merely controls the maximum queuing delay and hence provides an
upper bound for the jitter.

The concept behind guaranteed service is that a flow is described using a token bucket.
Based on this flow description, network elements (routers, subnets, etc.) compute vari-
ous parameters describing how the service element will handle the packets of this flow.
By accumulating the parameters of all network elements along a transmission path, the
maximum delay that a packet might experience can be determined.

3.2. NETWORK LAYER QOS 91

Token Bucket Model A token bucket is determined by two parameters, a rate r and
a depth b. An illustration of the token bucket model is shown in Figure 3.4. The bucket
is continuously filled with tokens at rate r. It is limited to contain at the most b tokens.
A token bucket filter is used to characterize a flow. A source that conforms to the token
bucket filter (r, b) can only send when the bucket contains enough tokens. Thus, r can be
interpreted as the long-term average rate of the flow, whereas b is its burst size.

token bucket
of depth

b

rate
r

flow conforming
to token bucket
filter

Figure 3.4: The Token Bucket Model

Guaranteed service relies on the traffic (TSpec) and the desired service (RSpec) of the
flow reservation. The TSpec takes the form of a token bucket (r, b) plus a peak rate p, a
minimum policed unit m and a maximum datagram size M . The RSpec is a rate R (with
R ≥ r) and a slack term S. The slack term signifies the difference between the desired delay
and the delay obtained by using the reservation level R. It can be used by the network
routers to reduce the QoS properties of their reservations for a particular flow.

The definition of guaranteed service is based on the results found by studying the fluid
model [PG93]. It has been mathematically proven that the maximum queuing delay in a
node is bounded by the time the last packet of a burst of size b is delayed in the queue, if
guaranteed service provides a guaranteed bandwidth not less than r.

The bound on the queuing delay must be adjusted by error terms C and D in each network
element which specify how the flow deviates from the fluid model. The composition function
is applied along the entire path to compute the end-to-end sums of C and D, namely Ctot

and Dtot. Then, the fixed latency of the path is added to get a bound on the absolute delay.
Applications decide whether the resulting delay bound is sufficient based on their traffic
characteristics and the received information on error terms and latency from the network.

In order to ensure that the traffic originating from the sender conforms to the token bucket,
guaranteed service requires traffic policing at the edge of the network. According to the

92 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

specification [SPG97], non-conforming datagrams should be treated as normal best-effort
datagrams. Besides standard policing, guaranteed service supports policing by means of
traffic reshaping. Reshaping tries to restore (possibly distorted) traffic that violates the
TSpec in such a way as to make it conform to the TSpec. It entails, for example, delaying
packets until they are in conformance with the token bucket. Policing is done at the edge
of the network, whereas reshaping is done in the core of the network (at all source branch
points and at all source merge points).

Guaranteed services can be seen as one extreme end of delay control for networks. Other
services controlling delays, usually provide much weaker assurances about the resulting
delays. In order to provide absolute assurance of QoS, guaranteed services must be provided
by every network element along the transmission path. This, however, does not imply that
guaranteed services must be deployed in the whole Internet. If fully deployed in an Intranet
or the backbone of an ISP, guaranteed services can be offered within the company’s Intranet
or between customers of the ISP.

Controlled Load Service

Controlled load service [Wro97a] promises a QoS service for data flows that is closely
approximating the QoS that the same flow would receive from an unloaded network with
best-effort service. In contrast to guaranteed service it does not give explicit or hard QoS
guarantees with respect to bandwidth, delay and jitter. Nonetheless, the service provides
low end-to-end delays and very few packet losses similar to those packets would experience
under unloaded conditions from the same series of network elements. Note, the term
“unloaded” is used in the sense of “not heavily loaded” or “not congested” rather than not
loaded at all.

Applications that exploit controlled load service for their data flows may assume: first, the
percentage of packets not successfully delivered to the receiving end-nodes is very small
(close to the basic packet error rate of the transmission medium); second, the transit delay
of most delivered packets is not greatly exceeding the minimum transmit delay experienced
by any successfully delivered packet.

Controlled load service is designed for applications that are highly sensitive to overloaded
conditions (for example, live audio/video streaming tools) but can tolerate small QoS vari-
ations (for example, adaptive applications). Applications with fixed end-to-end timing
requirements that fail immediately when end-to-end delays exceed their boundaries re-
quire hard QoS guarantees (see guaranteed service 3.2.5.3). According to the discussion
in section 3.1.3, adaptive real-time streaming applications operate badly under overloaded
or congested network conditions. But, network experiments [M+98] have shown that they
work well on unloaded networks. Thus, a service that imitates unloaded networks might
provide sufficient QoS for these applications.

The controlled load service is similar to the guaranteed service in that sender nodes com-
municate the token bucket specification (TSpec) of their traffic (see guaranteed service

3.2. NETWORK LAYER QOS 93

3.2.5.3) to the network. The network nodes ensure that enough resources will be set aside
for the data flow. Active admission control mechanisms prevent the network elements from
overloading their link, buffer space or computational capacity of their forwarding engine.
As in the case of guaranteed service, controlled load service provides QoS only for traffic
conforming to the TSpec given at setup time. The token bucket parameters require that
the amount of data sent for a particular flow does not exceed rT + b, where r and b are
the token bucket parameters and T is the length of the time period. Excess traffic should
simply be forwarded on a best-effort basis if sufficient resources are available. Network
elements should prevent excess controlled load traffic from unfairly impacting the handling
of normal best-effort traffic. The proper handling of the latter case, however, is not yet
clearly defined. Controlled load service also allows delaying of packets for reshaping rea-
sons. However, the overall requirement for limiting the duration of such traffic distortion
must be considered.

Controlled load service is advantageous over guaranteed service in that it enables much
better overall network utilization. Note, guaranteed resource reservations often waste a
large percentage of the available resources since they are not always fully used. Hence,
controlled load service offers a more cost-effective solution if no real hard guarantees are
required. Finally, since controlled load service provides only soft QoS guarantees, the
implementation of the router software is less complex and therefore easier to realize than
in the case of guaranteed service.

Traffic Control

The IntServ QoS control service within Internet nodes is implemented by mechanisms
that are collectively called traffic control. These mechanisms include packet classification,
admission control, and packet scheduling or some other link-layer-dependent mechanism to
determine when individual packets must be forwarded. Admission control is required to
ensure the node has sufficient resources available to meet the QoS demands of each new
request. The packet classifier determines the QoS requirements for each packet coming
through the node based on its flow affiliation. For each interface, the packet scheduler or
other link-layer-dependent mechanisms are responsible for providing the promised QoS.
See Figure 2.9 as an illustration of the inter-operation between those components.

The implementation issues of traffic control are largely left to the router vendors. Current
implementations differ in the processing algorithms, underlying mechanisms, processing
speed, and bandwidth utilization. The IntServ working group has suggested one possi-
ble implementation framework [B+94]. The scheduling algorithm Weighted Fair Queuing
(WFQ) forms a key part of this framework. WFQ supports fair scheduling based on mul-
tiple queues. Each flow has a separate queue and packets are scheduled so that each flow
receives a fair fraction of the link bandwidth depending on its priority. In contrast to static
time-slicing mechanisms, WFQ does not waste bandwidth while there is still demand. If
a particular flow does not use its assigned bandwidth, other classes can use it. It dynami-

94 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

cally determines the next queue to be served according to the bandwidth that each queue
received previously and its priority. Other scheduling algorithms, such as weighted round
robin8, could also be used within IntServ implementations. However, since WFQ has a
much finer granularity of fairness, it is usually the preferred scheduling algorithm within
the Integrated Services architecture despite its computational complexity.

The traffic control approach suggested if IntServ and normal best-effort service operate
side-by-side within the network is illustrated in Figure 3.5. It shows how the network
bandwidth is shared in a hierarchical model where guaranteed service is at the top level,
followed by the less strict controlled load service and finally the simple best effort service.

Flow 2

.

Guaranteed Service

Controlled load Service

Best-Effort.

Priority 1

Priority 2

.

Flow 1

Figure 3.5: Hierarchical Traffic Control

At the top level each guaranteed service flow is assigned to a separate WFQ queue. As a
result all guaranteed service flows are strictly separated from each other and scheduled in
a fair manner with respect to their bandwidth requirements. All other traffic (controlled
load and best-effort) is assigned to a pseudo WFQ flow. Within this flow controlled load
traffic and best-effort traffic is differentiated by means of priorities [Sch97]. In order to
prevent best-effort from being totally blocked the network admits only a certain amount
of controlled load traffic. The controlled load service class is divided into subclasses with
different delay bounds by assigning different priorities. In order to utilize the bandwidth
assigned to controlled load service efficiently (for example, during bursty periods), higher
priority classes are allowed to temporarily borrow bandwidth from a lower-priority class.
Within each controlled load subclasses the overall delay is minimized simply by a FIFO
scheduling algorithm. Flows within a subclass should have similar QoS characteristics, so
when a burst occurs in one flow, the other flow can share the delay without being too much
delayed.

8Weighted round robin provides fair service in terms of the number of packets sent by each flow and
the flow’s priority.

3.2. NETWORK LAYER QOS 95

3.2.5.4 Summary

IntServ can be seen as a reliable QoS framework capable of providing soft and hard end-
to-end QoS guarantees to end-user applications.

The main drawbacks, however, are: First, IntServ relies on all network elements along a
transmission path supporting the service. Although IntServ is the main QoS architecture
(apart from DiffServ) currently experimented within the Internet, hardly any network
routers are already capable of supporting IntServ. Second, end-to-end QoS guarantees
require a per-flow state in every intermediate network element. This, of course, does not
scale in large networks and in particular not within the core of the network.

Due to the scalability problem of IntServ researchers have begun to discuss new, scalable
QoS models for the core of the Internet. The DiffServ architecture, for example, is one result
of this effort. Furthermore, aggregation mechanisms which make IntServ more scalable in
the core of the network are explored [Ber98, GA98].

A clear trend towards IntServ or DiffServ cannot be seen yet and might never be seen.
New approaches or approaches that incorporate the IntServ and DiffServ architectures are
more likely to become the future QoS framework within the Internet. One such integrated
approach is presented in section 3.2.6. Since many believe that the future QoS solution for
the Internet includes the ideas of DiffServ and/or the IntServ, industry leading companies
investigate both approaches.

3.2.6 Integration of Differentiated and Integrated Services

The Integrated Services architecture (see section 3.2.5) supports end-to-end QoS with soft
or hard guarantees on IP networks. However, the reliance on “per-flow state” and “per-flow
processing” is an impediment to this deployment in the Internet at large, and especially
in large backbone networks. Differentiated Services (see section 3.2.3), on the other hand,
promise to expedite the realization of QoS enabled networks by significantly simpler mech-
anisms compared to IntServ without requiring end-to-end deployment. DiffServ overcomes
the implicit scalability problems of IntServ and is therefore suitable for large networks,
such as the Internet. In contrast to IntServ, however, DiffServ provides a significantly
weaker QoS model without QoS guarantees.

The deployment of DiffServ in the core network (where scalability is a concern) and IntServ
in stub networks at the edges (where scalability is not crucial) meets the requirements
for a scalable global QoS architecture for the Internet. Since IntServ and DiffServ are
complementary tools in the pursuit of QoS, a framework that uses IntServ as “customer”
of DiffServ has chances for success [Ber98].

96 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

3.2.6.1 Network Architecture

A sample network shown in Figure 3.6 is illustrated in order to demonstrate inter-operation
between IntServ and DiffServ.

.

Sender
(TX)

Receiver
(RX)

BR 1 BR 2

Stub
Network

Stub
Network

Transit
Network

IntServDiffServIntServ

ER 1 ER 2

Figure 3.6: A sample Network Configuration: DiffServ capable transit network and two
IntServ capable stub networks

The transmitting (TX) and receiving (RX) hosts use a resource setup mechanism, such
as RSVP (see section 2.3.1), to communicate the QoS requirements of QoS aware user
applications to the network nodes. Both, TX and RX, are part of IntServ stub networks.
The transit network, on the other hand, is not required to be IntServ capable. It provides
DiffServ with two or more levels of service based on the DS field in the headers of carried
packets. In order to provide end-to-end QoS services, the transit network must be able to
carry messages of the resource setup mechanism transparently to other stub networks.

The IntServ service types (controlled load and guaranteed service) must be mapped to
a DiffServ service class (or behavior aggregate). End-to-end services can be provided
by concatenating PHBs [B+98] (see section 3.2.3). The contract negotiated between the
customer (owner of the stub network) and the carrier (owner of the transit network) for
the capacity to be provided by each of a number of standard DiffServ service classes is
called the carrier-customer agreement.

Edge routers (ERs) are special routers that bridge the IntServ and DiffServ region of the
network. End-to-end resource reservation requires that the applications and the IntServ
nodes are explicitly informed of admission control failure in the DiffServ network. This
enables them to take corrective action and to avoid overloading the DiffServ network. The
DiffServ implementation within ERs is responsible to provide an interface to the DiffServ
Admission Control Service (DACS). If dynamic service agreements between stub networks
and transit networks are deployed, the DACS must communicate with so called bandwidth

3.2. NETWORK LAYER QOS 97

brokers [N+97] to make admission control decisions based on provisioned limits as well as
on the topology and the capacity of the DiffServ network. Boundary routers (BR) that are
simply conventional DS boundary routers are expected to implement the policing function
of DiffServ ingress routers.

3.2.6.2 Reservation Establishment

Any network element involved in reservation establishment must reject a reservation request
if insufficient resources are available in order to prevent already reserved flows from losing
their QoS guarantees. Since the transit network does not interpret the reservation setup
messages, ERs9 are responsible to control admission. They must compare the “requested”
resources with the resources “available” at the corresponding DiffServ service level in the
transit network. If the reservation is admitted, the DACS must update the available
capacity for the service class and propagate it to the bandwidth brokers of the DiffServ
network.

3.2.6.3 Summary

The inter-operation of IntServ and DiffServ to provide a scalable QoS framework for to-
day’s Internet is successful in that it resolves the scalability problem of IntServ in core
networks. However, the hard end-to-end QoS guarantees that IntServ can offer become
lost by mapping IntServ reservations onto DiffServ service classes. It is important to note
that DiffServ does not offer end-to-end services. Even though the framework described
in this section approximates the end-to-end QoS of IntServ fairly well, the lack of a reli-
able admission control mechanism for DiffServ prevents the service from offering reliable
resource promises and results in getting overloaded under certain conditions.

3.2.7 Summary

This section summarizes the study of network layer QoS mechanisms that are currently
of interest within Internet research. The QoS mechanisms are examined on their usability
and importance for real-time media streaming.

The first group of mechanisms includes various service differentiation mechanisms, namely
relative priority marking, service marking, and DiffServ.

The simple approach of relative priority marking is only of limited use for real-time stream-
ing since relative priorities do not provide suitable differentiation. A major flaw of this
approach is also that nothing prevents applications from marking all packets with the
highest priority.

9If RSVP is used, the ER that receives the RESV message after it passes the transit network.

98 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

Service marking enhances service differentiation based on relative priorities by increasing
the range of possible service semantics. However, service marking has no provision to easily
add new service types since the header field is small and new types would involve changes
in each network node. Unlike DiffServ, service marking uses the marking also as an input
for the routing decision.

DiffServ is currently the primary differentiation mechanism discussed within the IETF.
It outperforms the two former differentiation mechanism by supporting flexible service
classes that are not limited to a pre-defined standard. In principle, DiffServ provides a
mechanism that divides the network into several virtual best-effort networks each of that
offers different QoS. Since DiffServ does not require “per-flow” state information within
network routers, it has the potential to resolve the scalability problem of IntServ in the core
of the network. However, forwarding behaviors only on a “per-hop” basis, prevent DiffServ
from offering end-to-end service guarantees. Moreover, the lack of a reliable admission
control mechanism impedes DiffServ from offering reliable resource promises. Even though
DiffServ cannot guarantee end-to-end QoS, it has the potential to improve network QoS
received by real-time streaming application when widely deployed in the Internet. QoS
sensitive real-time media traffic would then be protected from (discrete) data traffic.

Another mechanism, called IP label switching, aims at improving current QoS in the
Internet by means of packet switching techniques. IP label switching is more efficient
than regular IP routing due to the simpler decision making process in network routers (or
switches). This has the potential to reduce the overall processing load on the network and
the end-to-end delays received by real-time streams simply by reducing the processing cost
in every intermediate node. Similar to IntServ, IP label switching does not scale in the
core of the network, where IP switches have to maintain forwarding state on a “per-flow”
basis.

The IntServ architecture provides network level QoS by controlling the network delivery
service. Real-time streaming applications can request their QoS demands by means of
a resource reservation protocol. Granted QoS provides optimal service for QoS sensitive
applications such as real-time streaming applications. IntServ supports guaranteed (hard)
and controlled load (soft) QoS guarantees. On the one hand, controlled load QoS, provid-
ing service equivalent to unloaded networks, is suitable for adaptive real-time streaming
applications that are capable of dealing with small variations in the QoS. On the other
hand, guaranteed QoS, offering hard QoS guarantees, provides optimal service for real-time
streaming applications even without adaptation, error correction, and receiver buffering
mechanisms. The main drawbacks of IntServ can by summarized as follows: first, IntServ
relies on all network elements along a transmission path to support end-to-end reservations,
and second, “per-flow” state is required in every intermediate network element. This, of
course, does not scale in large networks and in particular not within the core of the Internet.

Another approach that integrates IntServ and DiffServ suggests to use DiffServ as a scal-
able, hop-by-hop QoS mechanism in the core of the network, and IntServ at the stub
networks, where scalability is not a problem. Using IntServ as “customer” of DiffServ en-

3.3. SUMMARY 99

ables streaming application to negotiate their QoS requirements within stub networks. In
the DiffServ network in the core, IntServ QoS reservations must be mapped to appropriate
DiffServ service classes. Since the DiffServ cloud in the core cannot easily provide real QoS
guarantees, this integrated approach cannot offer hard end-to-end QoS guarantees such as
pure IntServ networks.

3.3 Summary

This section summarizes the results of the analysis of application level techniques and net-
work level QoS mechanisms which impact the QoS of interactive real-time media streaming
applications.

The conclusions of the discussion on application layer techniques can be summarized as
follows:

• With respect to packet transfer, interactive real-time streaming applications should
consider that:

– RTP-on-UDP provides the best streaming service for interactive media stream-
ing applications among current Internet protocols.

– Interactive applications demand small packets that encompass only 1 or 2 media
frames.

– Real-time streaming applications need to “shape” their data traffic

• Packet-based forward error correction mechanisms capable of correcting a few con-
secutive packet losses are recommended.

• Receiver buffering is mandatory within Internet communication where no hard QoS
guarantees are available.

• Adaptation as a general mechanism for adjusting the operation of an application de-
pending on the received QoS is highly recommended. It has the potential to improve
most QoS mechanisms (for example, receiver buffering, forward error correction, etc.).

From the study of network layer techniques the following results can be concluded:

• The IETF’s DiffServ and IntServ architectures both have the potential to improve
the network QoS for real-time media streaming applications.

• IP label switching, which has the potential to significantly reduce the end-to-end
delay experienced by packets and the processing cost in every intermediate network
node, does not scale successfully in the core.

100 CHAPTER 3. REAL-TIME STREAMING IN THE INTERNET

• Since DiffServ cannot provide QoS guarantees, IntServ with its hard and soft QoS
guarantees is more profitable for real-time media streaming.

• The scalability problems of IntServ prevent its use in the core of the Internet.

• Integrated solutions where DiffServ is used as a scalable, hop-by-hop QoS mechanism
in the core of the network, and IntServ is used at the stub networks, are more likely
to become the future QoS framework of the Internet.

• Since DiffServ in the core cannot easily provide real QoS guarantees, integrated
solutions cannot offer hard end-to-end QoS guarantees. Therefore, extended IntServ
solutions that achieve scalability through aggregation and overhead reduction might
be preferred in due course.

• IntServ and IP label switching are technologies that inter-operate well and therefore
might direct future Internet networks away from classical packet routing.

Chapter 4

The Application: WebAudio

This chapter describes the application architecture and discusses the implementation issues
of WebAudio, the real-time audio streaming application developed within the context of
this thesis.

Before introducing the application the results of the discussion on Internet multimedia pro-
tocols (see chapter 2) and a summary of Internet real-time streaming issues are presented.

Summary on Internet Real-Time Audio Streaming

Interactive live audio communication tools stream real-time audio data; this data is highly
delay sensitive (see section 1.3). Streaming audio can thus be classified as time-critical
traffic (see section 1.1) with very high QoS constraints in terms of the end-to-end delay,
jitter and reliability.

Short round-trip delays are particularly important since real-time conferencing, like hu-
man communication in general, demands good interactivity. Even small amounts of jitter
introduced by the network and the end systems is noticeable since it has a direct impact
on the latency introduced by receiver buffering and thus on the overall end-to-end delay.
Besides delay and jitter, real-time media streaming is also very sensitive to unreliable data
transfer. In Internet communication, only packet loss is normally considered since bit er-
rors occurs very rarely and usually result in packet discard. The bandwidth requirements
of audio streaming are moderate compared with the average throughput of current In-
ternet applications; compared with the bandwidth requirements of packet video they are
rather negligible. In addition, sophisticated encoding formats are proposed which greatly
reduce the data rate of audio streaming to as little as 2.4, 4.8, 13 or 16 kbps for voice and
approximately 128, 196, or 384 kbps for high quality sound (see section 1.3).

Since end-to-end QoS constraints are very strict in the case of interactive real-time audio,
QoS degradations have a great impact on usability (in terms of user satisfaction). In order

101

102 CHAPTER 4. THE APPLICATION: WEBAUDIO

to satisfy the QoS requirements of audio streaming applications, the IntServ architecture
(see section 3.2.5), capable of supporting hard QoS guarantees 1, is currently the most
promising approach in the Internet. If applications are capable of adapting to small varia-
tions in the QoS, soft guarantees in IntServ2 would provide satisfactory service. According
to the discussed in section 3.1.3, it has been shown that adaptive applications perform
well under low or moderate network load. If IntServ is not supported on every node along
the delivery path, end-to-end reservations cannot be established. In this case applications
should resort the DiffServ architecture (see section 3.2.3). DiffServ operates even if only few
segments of the network support service differentiation. Since DiffServ does not promise
end-to-end QoS, applications must be able to adapt to variations in network QoS.

If neither IntServ nor DiffServ is provided by the network segments between a sender and
receiver, applications must rely solely on adaptation mechanisms to compensate for the
dynamic QoS changes in the network. Since both IntServ and DiffServ are still in the
experimental stage and are not widely deployed within today’s Internet, adaptation is
highly recommended for real-time streaming applications. In the wide area Internet, QoS
variations often exceed the adaptive boundaries of adaptation mechanisms, and hence,
satisfactory usability can rarely be accomplished. This situation is unacceptable and will
hopefully change as the latest generation of routers with IntServ and DiffServ QoS support
become more widely deployed.

Real-time audio streaming applications intended for use within the global Internet cannot
rely on the availability of network level QoS. However, if an application can benefit from
any QoS support from the network, it should make use of it. One can conclude that packet
audio, in the context of Internet streaming, demands the “best” QoS that the network
can currently offer. Therefore, applications should have support for both IntServ and
DiffServ, and should be capable of adapting to the “best” available service. If no network
QoS support is provided, applications must use adaptation mechanisms to compensate for
the heavily changing QoS characteristics of the network. The impact of variable end-to-
end delays due to network congestion can be reduced by dynamic receiver buffering (see
section 3.1.4). High packet loss can be largely resolved by means of open loop forward error
correction mechanisms such as packet-based FEC (see section 3.1.2) which is an effective
approach to compensate for isolated packet loss. Packet losses can be isolated by means
of traffic shaping by spreading packet clusters (see section 3.1.1). If the available network
bandwidth is insufficient, applications should provide adaptive encoding mechanisms that
allow dynamic changes of encoding format. Thus, if congestion occurs, applications can
decrease the throughput requirements by applying higher compressed audio encodings.

1Guaranteed services promise resources or QoS with only few exceptions; a route change, for example,
may cause the network to lose reservations (see section 2.3.3 for a detailed discussion).

2Also known as controlled load service (see section 3.2.5.3).

4.1. APPLICATION ARCHITECTURE 103

Motivations for “another” Audio Application

It could be argued that developing another streaming application was unnecessary since
there are already several commercial applications (such as, Microsoft NetMeeting, Re-
alPlayer, CuSeeMe) and even applications with free source code (for example, Berkeley’s
vat [MJ95], UCL’s rat [H+95], INRIA’s FreePhone [BVGFPne], etc.) available for the
Internet. The main reasons for developing a new application from the ground up are as
follows:

• An important goal was to analyze the benefits of the new Internet protocol for QoS
based real-time audio streaming. As it is shown in section 5.3, IPv6 has the potential
to improve current QoS mechanisms. Since none of the currently available audio
streaming tools (see section 1) had support for IPv6 at the time this work was
started, the only option was to develop a new tool.

• Developing a new application from ground up allows proper integration of new pro-
tocols and mechanisms from the beginning, and also simplifies modifications and
testing.

• Current Internet multimedia applications are mainly limited to either adaptation or
resource reservation and are not capable of adapting between different QoS mecha-
nisms, namely IntServ and DiffServ, and simple “best-effort” service.

• Today’s audio streaming applications are usually controlled through their individually
developed user interfaces rather than Web based interfaces. With the growing use
of the Web as a means to provide selection and control interfaces, users now expect
state-of-the-art Internet applications to provide Web based interfaces. Current audio
applications tend to have been developed prior to this rapid growth of the web and
are often difficult to integrate into Web based environments.

The rest of the chapter is organized as follows. Section 4.1 focuses on the architecture of the
new real-time audio streaming application. The design issues are discussed on a conceptual
level. Section 4.2 discusses the implementation issues and the problems occurred during
the development.

4.1 Application Architecture

A brief overview of the new real-time audio streaming tool is provided by highlighting the
main characteristics of WebAudio.

Client-server based: The application is based on client-server architecture. The audio
client is called wa, whereas the audio server is called was.

104 CHAPTER 4. THE APPLICATION: WEBAUDIO

Asymmetric architecture: The client and the server are divided into two separate
applications. Thus, interactive communication requires an audio client and server on
both ends.

Simplex communication: Audio information is transmitted via a simplex transport
channel. Hence, two-way communication requires two separate channels – one in
each direction.

Network level QoS support: WebAudio makes use of resource reservation, if supported
by the underlying network, to “guarantee” the QoS required for the audio streams. If
the network does not provide QoS, the streams are transmitted assuming the simple
best-effort service.

Adaptation support: The first release of WebAudio only supports adaptation of re-
ceiver buffering. However, WebAudio has provision for the future addition of adaptive
mechanisms such as dynamic encoding selection or adaptive packet-based FEC due
to the built-in QoS feedback channel from the client to the server.

Out-of-band signalling: WebAudio uses a special signalling connection, independent
from the media streaming channel, to initialize and control the stream. Separating
stream control from the media channel enables the use of common protocols rather
than developing specialized and non-compatible protocols.

Multi-streaming capable: Both, the WebAudio client and server, are capable of man-
aging multiple streams simultaneously. The server sends the encoded audio data
to all the clients on point-to-point connections. The clients mix all received data
streams prior to playback.

Web interface: WebAudio is specifically designed to be a Web application. The “open”
control interface allows simple remote control of the applications by means of a Web
browsers, and as a result, stream control is easily integrated within Web pages or
Web applications.

4.1.1 Operational Overview

This section provides an overview of (1) how the WebAudio server (was), the WebAudio
client (wa) and the user interfaces operate, (2) what forms of communication are required,
(3) which protocols are used, and (4) how these components work together. Figure 4.1
provides an operational overview of the WebAudio application framework and illustrates
a typical WebAudio scenario of a stream setup and teardown.

The WebAudio server listens on a “well-known” control port for HTTP-based or RTSP-
based control requests from clients. In the Web scenario illustrated in Figure 4.1, the Web
browser requests an initial control Web page or a user interface from the WebAudio server

4.1. APPLICATION ARCHITECTURE 105

o

b

i

S
e
r
v
e
r

C
l
i
e
n
t

W
e

A
u
d

o

b

i

RTSP-URL)

RTSP-URL)

GET
(PLAY,

GET
(STOP,

OK OK

(User Interface)

OK

OK (Session ID)

RTCP (delay, jitter, loss)

TEARDOWN (Session Id)

RESV (FlowSpec, FilterSpec)

PATH (TSpec)

OK (Session ID)

PLAY (Session ID)

SETUP (RTSP-URL, RTP port)

R T P (audio stream)

GET

OK (Session ID, RTCP port)

HTTP
RTSP

RTP (RTCP)
RSVP

Browser

W

Web

e

A
u
d

Figure 4.1: Operational Overview of the WebAudio Framework

by a standard HTTP request. The Web page prompts the Web browser to startup the
WebAudio client as a so-called helper application (see section 4.2.3).

The user interface, which could be a simple HTML page or a Java Script enhanced Web
page, provides stream controls based on hyper links to remote control the WebAudio client
(see section 4.1.5). Although the client provides a HTTP-based and an RTSP-based control
interface, in this scenario only the HTTP interface is used.

Audio streaming is initialized by a HTTP request from the user interface to the WebAudio
client. The request includes the WebAudio command PLAY and an RTSP-URL, namely
the address and port of the server and the required audio resource (see section 2.4.2). The
client transforms this request into an RTSP SETUP request by adding the RTP port where
the audio stream is expected and forwards it to the WebAudio server (see section 4.1.4.2).
The server sets up a new audio stream, and if successful, the server indicates the successful
operation in the RTSP reply. The reply message also contains a session identifier for the
new audio session and the server’s RTCP port where the QoS feedback information of the
client is expected. Upon successful stream setup, the WebAudio client requests the server
to start streaming the audio data by sending an RTSP PLAY request. The WebAudio server

106 CHAPTER 4. THE APPLICATION: WEBAUDIO

then starts streaming the audio to the client RTP port.

Upon receiving the audio stream packets, the client estimates the optimal buffering time in
order to compensate the jitter experienced in the network and calculates the playout time
of the packets (see section 4.2.5). At the predetermined playout time, the audio frames of
the packets are decoded and mixed (if several streams are received) and finally played back
(see section 4.2.8). The client computes a receiver statistic which includes QoS parameters
such as delay, jitter and packet loss based on the current network QoS characteristics. This
feedback information is periodically sent back to the WebAudio server by means of RTCP
(see section 4.1.4.3).

The audio stream is torn down by a HTTP-based STOP request from the user interface. The
WebAudio client again transforms the control request into an RTSP TEARDOWN request and
forwards it to the WebAudio server. The server then tears down the stream and releases
the audio session state.

If the underlying network supports resource reservation based on RSVP, the server requests
the server RSVP daemon to send PATH messages indicating the required resources for the
audio stream towards the WebAudio client. If RSVP is supported along the whole trans-
mission path, the client receives the PATH messages and then establishes the reservation by
requesting the client RSVP daemon to send RESV messages up-stream (see section 4.1.3.2).
At the end of an audio session, the reservation is torn down by the client by releasing the
RSVP session. The RSVP daemon then sends TEARDOWN messages up-stream to the sender
which releases the reservations in the network nodes.

4.1.2 Architecture

The WebAudio system is based on an asymmetric client-server architecture. The basic
architecture of the WebAudio system, the server was and the client wa, is illustrated
in Figure 4.2. Even though the WebAudio client and server have conceptually different
functionalities, they have many tasks in common. The modular application architecture,
therefore, enables reuse of modules in both applications.

The communication and networking interface of the WebAudio server is very similar to
the client interface. Both have TCP modules (see section 2.2.2) to exchange application
control information. The WebAudio server has one TCP module listening on a well-known
port for control requests of the client. The client, in contrast, requires two TCP modules:
one to listen on a well-known port for incoming requests from the user interface, and one
to communicate with the server.

For the stream control both have a HTTP and an RTSP module (see section 2.4) which
process the stream control messages exchanged between the user interface, the client and
the server. The client and server TCP modules which receive the control requests of either
the user interface or the client are connected to the HTTP and RTSP modules. They are

4.1. APPLICATION ARCHITECTURE 107

HTTPRTSP RTP RTCP

UDP UDP

RSVP RAPI

RSVP

GSM ADPCM PCM

Socket
Port

1..n

1..n

TCP TCP

1..n

1..n

Audio Mixer

Audio Playback

WebAudio Client

TCP

HTTPRTSP RTP RTCP

UDP UDP

WebAudio Server

GSM ADPCM PCM

Socket
Port

1..n

1..n

Audio Capture

RSVP

RSVP

RAPI

Figure 4.2: Modular Architecture of the WebAudio Client wa and Server was

capable of processing either HTTP or RTSP requests. The second client TCP module,
which is used to for the client-server communication, supports only RTSP.

As a transport layer mechanism for the actual audio data stream, UDP (see section 2.2.1) is
used. The application level protocol RTP with its feedback mechanism RTCP (see section
2.2.3) is used to facilitate streaming. Both the WebAudio client and server require an
RTP, an RTCP and two UDP modules. The WebAudio server listens on one UDP port
for the RTCP feedback messages. On the other port, it sends the RTP audio packets to
the client(s) receiving the stream. The WebAudio client, in contrast, listens on one UDP
port for the RTP audio packets, whereas the other port is used to send the RTCP feedback
messages.

The QoS support of the first version of WebAudio is limited to the IntServ framework (see
section 3.2.5). In order to establish and maintain resource reservations, RSVP is used as
a resource reservation protocol (see section 2.3.1). Both the client and the server have an
RSVP module to interface with the RSVP Application Programming Interface (RAPI) and
the RSVP daemon running in the end systems. In later releases support for the DiffServ
QoS architecture (see section 3.2.3) will be added.

While the communication modules of the WebAudio server are very similar to those of the
client, the audio processing is different. The server uses a module to capture the audio
data from the sound device and several encoding modules for the different audio formats.
The WebAudio client, in contrast, has different modules for each decoder, a module for the
mixing of multiple streams received simultaneously, and a module to playback the sound
samples.

The main modules of both applications, shown in the center of the illustrations (see Figure
4.2), interconnect the different communication and audio modules. The client and server
modules are responsible for calling the modules in an appropriate sequence to ensure that

108 CHAPTER 4. THE APPLICATION: WEBAUDIO

the data are processed according to their time constraints. The WebAudio applications
are based on a single threaded program flow. All modules are implemented such that
no blocking system calls lock the process in a module. Based on the BSD “select”3 and
polling4 mechanisms asynchronous processing is achieved.

The individual modules introduced as part of this application architecture overview are
further examined and discussed in latter sections of this chapter.

4.1.3 Protocols

The WebAudio application framework requires several protocols on different OSI levels to
communicate stream control information for the application signalling and to transmit the
audio data between the server and clients.

4.1.3.1 Network Level

On the network level WebAudio supports both, the current Internet protocol as well as
the new Internet Protocol, IPv6 (see section 2.1).

Since one aim of this work is to explore the benefits of IPv6 for network level QoS mech-
anisms, including support for IPv6 was essential. As shown in section 5.3, the WebAudio
implementation is used to examine the gain of IPv6 and, in particular, the IPv6 flow label
within packet classification. Since IPv6 still is not wide-spread within the Internet, the
development of a state-of-the-art audio streaming application intended for use in today’s
global Internet, however, requires also support for IPv4.

To support both network protocols in an integrated fashion, the transport protocol classes
(or modules) for TCP and UDP are developed such that they can be configured to use either
IPv4 or IPv6. The application is currently designed such that the network protocol need to
be specified during start up. One might have expected that the underlying network protocol
is pre-determined by the operating system release. However, current IP implementations
with support for IPv6 still provide service for IPv4. Both protocols operate side-by-side in
a so-called dual-stack architecture.

IPv6 support within WebAudio is limited to audio streaming communication. Since We-
bAudio is intended to be easily integrated into Web applications, the application signalling
needs to be based on top of the network protocol used by normal Web clients. Standard
Web browsers, such as Netscape’s Communicator 4.x and Microsoft’s Internet Explorer

3A technique which indicates buffers, sockets, or files which either have more data in their input buffers
to read or free space in their output buffers to write further data.

4A mechanism which periodically checks if further processing is required, or if new data are available
to be read or written.

4.1. APPLICATION ARCHITECTURE 109

4.x, however, do not support IPv6 yet5. Hence, WebAudio control signalling is based on
top of IPv4. This is not really a limitation, since the analysis of the IPv6 benefits for
QoS mechanisms concerns only the time-critical data traffic in the first place. The low-
bandwidth and discrete data traffic of the control signalling is not much affected by IPv6
and thus can simply be transmit via IPv4.

4.1.3.2 Resource Reservation

WebAudio has support for network QoS based on resource reservation as described in
the IntServ framework (see section 3.2.5). The resource reservation mechanism known as
RSVP (see section 2.3.1) is currently the reservation protocol of choice in the context of
IntServ.

Since IntServ has the potential to improve the network QoS for QoS sensitive or time-
critical data traffic my far, WebAudio provides support for this QoS mechanism and re-
source reservation based on RSVP. Resource reservation within WebAudio, however, is
limited to the audio data traffic. Stream control messages are transmitted based on the
simple best effort approach of IP. Since this traffic is not time-critical, except that it might
delay the setup and teardown of streams slightly, it does not discriminate the application.

The inter-operation between the WebAudio client and server applications and the RSVP
process is illustrated in Figure 2.9. The server or client application communicates with the
RSVP daemon of the local machine by means of the RAPI. Library functions provided by
RAPI to setup and teardown reservations facilitate the communication between the user
application and the RSVP process.

The reservation establishment process described here is illustrated in Figure 4.3. The
WebAudio client and server register a new session with the local RSVP daemon by calling
the rapi session function during session initialization. The destination IP address and
transport protocol port of the audio receiver uniquely identify the new RSVP session. The
applications also need to specify an asynchronous call back function which is used for up-
calls on RSVP events such as reservation error, new path message, reservation established,
etc. In order to establish a new reservation, the WebAudio server calls the rapi sender
function by passing the QoS parameters of the audio stream. The local RSVP daemon
then establishes the PATH state for the new flow and initiates the sending of the PATH

messages. When the first PATH message reaches the client host, the RSVP daemon informs
the client application about the PATH event by means of the call back function. The client
then calls the rapi reserve function. The receiver needs to specify the QoS parameters for
the RESV messages. If the reservation is established, the sender RSVP daemon upcalls the
WebAudio server with a reservation established event.

A reservation teardown is processed similarly. The server or client application unregisters

5Recently Microsoft has released a beta IPv6 upgrade for the Internet Explorer.

110 CHAPTER 4. THE APPLICATION: WEBAUDIO

RSVP
daemon

RSVP
daemon

rapi_
sender

rapi_
receiver

rapi_
session

rapi_
session

RESV
event
upcall

PATH
event
upcall

End-Host End-Host

Network

WebAudio

Server

WebAudio

Client

PATH

RESV

PATH

RSVP

RESV
daemon

RSVP
daemon

Figure 4.3: Reservation Establishment with RAPI

the RSVP session with the RAPI function rapi release. As a result, the local RSVP daemon
creates a TEARDOWN message and sends it on the reservation path.

The interest in the impact of the IPv6 flow label for packet classification demanded the
extension of the RSVP protocol and the RSVP daemon. The protocol changes are doc-
umented in an official Internet-Draft [SDRS98]. In order to support the IPv6 flow label
in the RSVP software, the RSVP daemon implementation (rel 4.2a3) from ISI [ISI98] was
extended. It was the only RSVP implementation with a freely available source code at the
time. This implementation is also the most wide-spread RSVP distribution and served as
reference implementation for many subsequent RSVP products. The results of the exper-
iments using the IPv6 flow label as packet classification criterion rather than the source
and destination ports of the transport protocol header are presented in section 5.3.

In summary, WebAudio has built-in support for standard and flow label based RSVP. The
RSVP mode to be used is specified during application initialization.

4.1.3.3 Transport Level

The transport protocols used within WebAudio are discussed with consideration of the
different traffic types.

First, the transport protocol requirements for stream control traffic are examined. Web-
Audio deploys either HTTP or RTSP as stream control protocols. HTTP, on the one
hand, is limited to be used with TCP (see section 2.4.1). RTSP, on the other hand, can be
used either over TCP or UDP (see section 2.4.2). Since TCP provides ideal service for the
transport of control information due to its reliable service properties, it was the transport

4.1. APPLICATION ARCHITECTURE 111

protocol chosen for both, HTTP and RTSP based stream control. Limiting the transport
protocol for stream control traffic to TCP reduces the complexity of supporting multiple
protocols for the same end and allows the processing of HTTP and RTSP messages through
a single interface.

Second, the demands on the transport protocols for audio data traffic are discussed. The
choice of transport protocols within IP networks is currently limited to either UDP or TCP
(see section 2.2). Based on the results of the comparison of these transport protocols (see
section 2.2.4), UDP was selected as the transport protocol. However, since RTP facilitates
media streaming, the audio data traffic is transfered based on RTP-on-UDP. The main
advantages of RTP-on-UDP as opposed to TCP or simple UDP for media transfer can by
summarized as follows (compare with Table 2.2):

• RTP-on-UDP allows applications to fully control the data rate. Transport level rate
control, such as in TCP, does not reduce the data rate required be the application.

• RTP provides useful media streaming information, such as the timestamp, sequence
number and media type, in the protocol header.

• RTP’s feedback mechanism provided by its control protocol RTCP is highly valuable
when adaptation mechanisms are deployed.

The use of RTP within WebAudio can be described as follows: The WebAudio server wraps
the audio data in RTP packets and adds media streaming information, such as the payload
type, sequence number, timestamp and the session ID, in the protocol header. The clients
use these information to calculate the network QoS characteristics, namely the delay, jitter
and packet loss, of the audio stream. The QoS characteristics are fed back periodically to
the WebAudio server in so called Receiver Reports (RR) (see section 4.1.4.3). The RRs are
attached to an RTCP header and then sent in UDP packets to the server’s RTCP port.
The feedback information include the last sequence number, the loss fraction, the total
loss, the jitter, and the delay. Although the QoS feedback accomplished by means of RTP
and RTCP has provisions for server-side adaptation, the current version of WebAudio does
not yet implement adaptive mechanisms at the server.

4.1.3.4 Application Support Level

WebAudio requires an application support layer protocol that facilitates stream control of
the audio streaming. The Real-Time Streaming Protocol (RTSP), which recently became a
“Proposed Standard” [S+98b] within the IETF, provides the basic control functionality for
real-time media applications. It provides control services similar to a VCR remote control
with operations like play, pause, and stop.

Besides several advantages of RTSP, which have already been mentioned in section 2.4.3,
the main reasons for deploying it within WebAudio are noted here:

112 CHAPTER 4. THE APPLICATION: WEBAUDIO

• RTSP is a well defined standard. This allows for inter-operation with third-party
applications that use RTSP as stream control protocol (for example, the RealPlayer
media tool suite6).

• RTSP is specifically designed for the purpose of stream control. Its control function-
ality is therefore conform with the need of real-time streaming applications.

• RTSP’s protocol syntax is very similar to HTTP. Thus, RTSP has the potential to
easily inter-operate with HTTP.

Even though RTSP seems to be the perfect solution for stream control, it has one small
disadvantage for WebAudio. The integration of WebAudio in Web environments requires
a user interface – an application or any other control mechanism – which enables the
control of WebAudio from within Web pages. The stream control protocol RTSP, however,
demands for sophisticated user interface applications, such as Java programs, ActiveX
controls, Web browser plug-ins or helper applications which implement the RTSP protocol.
Simple HTML or Java Script based user interfaces would not be sufficient since these simple
techniques do not support RTSP.

However, these simple approaches support the Web protocol HTTP. As a result, HTTP
is supported as an alternative stream control protocol to RTSP. The advantages of the
HTTP based control interface are obvious:

• HTTP support allows easy Web integration of WebAudio. A simple HTML based
Web page can be used as a user interface. HTTP control requests can be encoded
in normal hyper links. A click of such a control link causes the Web browser to send
the respective HTTP control request to the client application.

• HTTP support enables the use of standard Web browsers as very simple user inter-
faces. Control requests can simply be entered in the Web browser’s location field7

(see Figure 4.5).

The multi-protocol control request interfaces is implemented such that HTTP and RTSP
stream control requests can be processed (see section 4.2.9). As a result, the WebAudio
client and server can be controlled by either HTTP or RTSP. However, to facilitate com-
munication between the client and the server, only the more sophisticated stream control
protocol is used.

4.1.4 Application Interface

The application interfaces of WebAudio can be described from two different perspectives:
stream control and audio streaming. The interfaces are described with respect to the
supported protocols: HTTP, RTSP, and RTP (RTCP).

6Further information are available at http://www.real.com/.
7The field where users usually enter the URL of a new Web page.

4.1. APPLICATION ARCHITECTURE 113

4.1.4.1 HTTP based Stream Control

The HTTP based stream control makes use of the HTTP searchpart mechanism (see section
2.4.1.1). It enables HTTP requests to be extended by a list of parameters. The mechanism
allows the encoding of control commands, here called methods, and their corresponding
parameters within standard HTTP-URLs.

The syntax of the HTTP-URL format used within WebAudio can be described as follows:

http://<host>[:<port>]/<resource>[?<method>{&<parameter>]}

The individual variables have the following meaning:

<host> specifies the Internet domain name (or IP address) of the WebAudio application.

<port> determines the port number of the application listening for incoming requests. This
port is usually well-known or must be carried towards the client or user interface by
some other means.

<resource> references a specific resource, usually a specific audio stream, to which the
<method> should be applied. It may consist of a path and/or a file name (for example,
/liveaudio/gsm).

<method> specifies the method which is applied to the <resource>. Three methods are
currently supported: GET, PLAY and STOP.

<parameters> or the list of parameters determine method specific arguments of the control
request. The supported parameters depend on the individual methods.

A brief description of the supported methods and their parameters is provided below:

GET: The WebAudio server simply replies the content of the specified <resource> as
HTML page. If no method is specified in the HTTP request, GET is used as the
default method. This allows WebAudio to be used as a Web server. If the <resource>
string is empty, a default Web page which starts up the standard user interface and
the WebAudio client application at the receiver is sent. The GET method does not
support parameters.

PLAY: Additional parameters of the PLAY method determine either the WebAudio server
(parameter: SERVER) to which the client should forward the control request or the
RTP receiver port (parameter: PORT) where the client expects to receive the audio
stream.

The following examples are presented for clarification: The first example presents
a user interface requests from the WebAudio client (usually on the same machine,
but it can be any Internet host) to set up and start streaming the audio resource
liveaudio/pcm from the WebAudio server webaudio listening at port 4445:

114 CHAPTER 4. THE APPLICATION: WEBAUDIO

http://localhost:4444/liveaudio/pcm?PLAY&SERVER=webaudio:4445

Upon receipt of this stream control request, the client transforms the control request
in an RTSP SETUP and PLAY control request forwards them to the server webaudio.
The second example shows a HTTP PLAY control request directly send to the We-
bAudio server webaudio.lancs.ac.uk:

http://webaudio.lancs.ac.uk:4445/liveaudio/pcm?PLAY&PORT=8312

The server will then setup a new stream and start streaming the audio data to the
source IP address of the HTTP request and the transport port 8312 of the HTTP
URL.

STOP: This method causes the WebAudio client and server to teardown the specified
stream and to release all the resources associated with that stream. STOP does not
support any additional parameters.

In the case of unsuccessful request processing, WebAudio returns an error message with
an error response code indicating the reason. Table 4.1lists the HTTP response codes used
within WebAudio along with their meaning in this context. The general meaning of the
response code classes of HTTP is presented in Table 2.7.

Code Description

200 HTTP control request was successfully processed
403 No permission to access the audio resource identified in

HTTP-URL
404 HTTP-URL or audio resource is not valid or not available
500 WebAudio application error
501 WebAudio command unknown
505 HTTP protocol or version not supported

Table 4.1: HTTP Response Codes used within WebAudio

From this description on how HTTP based stream control is achieved within WebAudio,
one might conclude that the simple HTTP based approach is sufficient for the purpose of
stream control. However, HTTP based stream control has two serious flaws.

First, standard HTTP does not provide a way for the WebAudio server to respond with
an appropriate error message or error code in the case of a server error. WebAudio specific
errors or errors related to stream control cannot be expressed by the default HTTP error
codes and messages. This problem could be solved by extending the HTTP protocol.
However, modifying the stream control protocol so that it is no longer compliant with
HTTP removes the main advantage of HTTP based streaming control, and thus, standard
Web browsers could not be used as simple user interfaces anymore.

4.1. APPLICATION ARCHITECTURE 115

Second, HTTP has no provision to exchange server generated session or stream identi-
fiers to uniquely address individual media sessions or streams. The stateless information
retrieval protocol HTTP does not provide semantics for media sessions or streams, and
hence, the HTTP standard does not define a protocol header field to express such iden-
tifiers. As a solution the WebAudio server could transmit the session id as part of the
HTTP payload. This solution, however, requires special HTTP clients that interpret the
payload correspondingly. As a result, the solution was not considered. Another approach
to address individual streams within HTTP stream control requests is to use the request
source IP address in conjunction with the media resource specified in the HTTP-URL. It
is to be noted that the source port information is not useful if stream control is carried
out by means of Web browsers, because subsequent control requests of the same session
might have different source ports. This technique limits the service to address one stream
per destination address and resource within WebAudio. This of course is not a strong
restriction, since common end systems usually have only one sound device. Receiving the
same audio stream multiple times would not be of interest. To resolve this limitation, a
simple solution could be to add the RTP port of of the WebAudio client as PORT parameter
to the control request. It could then be used in concatenation with the source IP address
to uniquely identify the client application.

4.1.4.2 RTSP based stream control

The general stream control mechanisms of RTSP are already described in detail in section
2.4.2. WebAudio implements the standard RTSP protocol according to RFC 2326 [S+98b].
In order to demonstrate how RTSP is used within WebAudio, all the RTSP methods used
are described. Their application within WebAudio is shown in examples.

WebAudio implements only the mandatory RTSP functionality. The following methods
are supported:

OPTIONS simply request a list of all the methods that are supported by WebAudio.

SETUP is called to initialize a stream. The stream state is allocated and a session number
is generated. SETUP must be called before a stream can be played. An example of
a SETUP request-response pair is presented below. It is assumed that the stream
setup could be processed successfully.

SETUP rtsp://audioserver.lancs.ac.uk/liveaudio/gsm RTSP/1.0

CSeq: 302

Transport: RTP, unicast, client port=4588

RTSP/1.0 200 OK

CSeq: 302

Transport: RTP, unicast, server port=6256

Session: 234303923

116 CHAPTER 4. THE APPLICATION: WEBAUDIO

Within the SETUP request, the client defines the transport protocol, the receiving
transport port, and the communication approach (unicast or multicast). In the
response, the server indicates its RTCP server port. In order to allow the client
to reference the stream in subsequent requests, the server generates a random and
unique Session identifier which is also sent as part of the RTSP response. The CSeq

parameter is used as a sequence number to uniquely identify request-response pairs.
It is used in all RTSP requests or responses.

PLAY causes the WebAudio server to start streaming the audio data of the stream corre-
sponding to the Session. PLAY simply changes the internal state of the stream from
initialized to play. The following example shows how the Session parameter is used:

PLAY rtsp://audioserver.lancs.ac.uk/liveaudio/gsm RTSP/1.0

CSeq: 303

Session: 234303923

If the RTSP request could be processed successfully, the WebAudio server responses
as follows:

RTSP/1.0 200 OK

CSeq: 303

PAUSE commands the WebAudio server to stop streaming the audio data. The stream
or session state, however, is not released yet. A subsequent PLAY request starts the
streaming process again.

TEARDOWN stops the audio streaming and releases the stream or session state in the server.
A subsequent control request with this session id would fail since the stream does
not exist anymore.

Table 4.2 lists the RTSP response codes that are used within WebAudio.

4.1.4.3 Data Streaming using RTP

For the transfer of the audio data, WebAudio uses RTP-on-UDP. Section 2.2.4 provides an
in-depth discussion on the benefits of the different transport protocols, namely UDP and
TCP, for time-critical data transmission such as audio streaming and the advantages of
the stream protocol RTP. The protocol header introduced by the application layer protocol
RTP merely adds stream information (see section 2.2.3) in front of the audio data. Figure
2.8 illustrates how the audio data are encapsulated in RTP, UDP and in the IP packet.

The stream information introduced by RTP (see Figure 2.7) is particularly valuable in the
context of real-time streaming. The timestamp field allows the receiver to calculate the

4.1. APPLICATION ARCHITECTURE 117

Code Description

200 RTSP request is processed successfully
400 RTSP method is invalid
403 No permission to access the audio resource
404 RTSP-URL or audio resource is not valid or not available
454 Session identifier is unknown or missing

(stream might not be properly setup yet)
500 RTSP server error
501 RTSP method is not supported
505 RTSP protocol or version not supported

Table 4.2: RTSP Response Codes used within WebAudio

transit delay and the jitter of the received packets. It provides the means to calculate the
optimal buffering time and the playback time of the packet. The sequence number field
enables the client to restore the original packet order. Packets traveling along different
transmission paths as a result of route changes might break the correct ordering. It is to
be noted that UDP provides neither a service which guarantees the proper order of packets
nor a mechanism to detect reordered packets. The payload type field indicates the audio
encoding of the packet data. Even if the sender changes the audio encoding in the middle
of a session (for example, due to temporary congestion), the change of the audio encoding
is indicated, and hence, the client can properly decode the audio data of the packet. The
source identifier field indicates the audio stream of the packet. It enables the WebAudio
client to distinguish audio data of multiple streams received at the same time. The source
identifier is required to correctly mix several streams received at the same transport port.
It is especially valuable within multicast communication. The remainder of the fields, for
example the flags, the version, etc. are merely required for protocol signalling reasons.

The stream information of the RTP header provide the necessary data to calculate QoS
feedback for WebAudio servers. The current transit delay and jitter, the total packet loss
and the loss fraction as well as the last and highest sequence number of received packets are
returned within the RTCP receiver reports [S+96] (see section 2.2.3). The QoS feedback
allows the WebAudio server to adapt the application operation in response to the changing
QoS characteristics in the network.

The transit delay delayn and jitter jittern of packet n are calculated as follows:

delayn = arrivaltimen − timestampn (4.1)

jittern = jittern−1 +
{

1

16
× (|delayn − delayn−1| − jittern−1)

}
(4.2)

118 CHAPTER 4. THE APPLICATION: WEBAUDIO

The loss fraction of the report interval is determined as follows:

lossfraction =
packetsexpected − packetsreceived

packetsexpected
(4.3)

RTCP is designed as a general control mechanism for RTP which includes, apart from
RRs, also Sender Reports (SRs) and Source DEScription (SDES) reports. RTCP also
supports aggregation of multiple reports within one RTCP packet. Within WebAudio,
however, RTCP is only used for the purpose of providing a QoS feedback channel from
the client to the server. WebAudio clients periodically send single RRs for each stream.
Aggregation of multiple RRs is in most cases not suitable, since clients usually receive their
audio streams from different WebAudio servers. The frequency of RR messages depends
on the bandwidth used for the audio traffic. The feedback period is selected such that
approximately 5% of the bandwidth utilized by the data traffic of the RTP stream is used
for the RTCP traffic.

SSRC of Packet Sender

0 8 3116 24

V=2

SSRC 1 (SSRC of first Source)

fraction lost total number of packets lost

highest sequence number received

interarrival jitter

last SR

delay since last SR

LengthPT = RR = 201RC

SSRC 2 (SSRC of second Source)

Figure 4.4: The RTCP Header Format

The message format of the RTCP receiver reports used within WebAudio is presented in
Figure 4.4. For the transport of the RTCP messages, the simple datagram protocol UDP
is used. The server’s RTCP port is negotiated during stream setup by means of RTSP
(see section 4.1.4.2). The RTCP feedback is an optional feature within WebAudio. If the
WebAudio server does not receive feedback information from the client, it simply continues
operation without QoS adaptation.

4.1. APPLICATION ARCHITECTURE 119

4.1.5 User Interface

WebAudio offers an “open” application control interface which enables a user interface to
control the client and server applications either via HTTP or RTSP.

The simplest form of a user interface compromises a standard Web browser. In addition
to retrieving Web pages, the browser is used to send HTTP based control requests to
the WebAudio client. Control requests can be entered at the browser’s location field. As
specified in section 4.1.4.1, control requests can be simply encoded in HTTP-URLs. Figure
4.5 illustrates the usage of Netscape’s browser as a basic user interface.

Figure 4.5: Netscape’s Web Browser as a Simple User Interface

HTTP-URLs encoding the stream control commands can also be included in standard
hyper links of HTML documents. The user can then launch the control commands by
clicking on the links. It is advisable to use HTML frames to redirect the HTTP response of
WebAudio to another frame in order to prevent the responses from replacing the “control”
HTML page. The client responses indicate the success or failure of the commands. See
section 2.4.1 for the complete list of HTTP response codes used within WebAudio. The
WebAudio response might also include HTML content which is then displayed within the
browser.

The following example shows how WebAudio control commands can be encoded in plain
HTML. The “control” Web page could be used as a very simple user interface.

<HTML>

...

<A HREF="http://localhost:4444/liveaudio/pcm?PLAY\&

SERVER=webaudio.lancs.ac.uk">

PLAY Live Audio (from webaudio.lancs.ac.uk)

<A HREF="http://localhost:4444/liveaudio/pcm?STOP\&

SERVER=webaudio.lancs.ac.uk">

120 CHAPTER 4. THE APPLICATION: WEBAUDIO

STOP Live Audio

...

</HTML>

A user interface programmed in Java Script [Co.pt], the Web script language, is also limited
to control the WebAudio client by means of the HTTP interface. The script language is
based on an event driven execution model. Programmers add functionality to the Web
page by assigning Java Script functions to events, such as mouse pressed, mouse moved,
load page, close page, etc. In the context of WebAudio, Java Script has the potential to
provide enough functionality to design easy-to-use and attractive user interfaces. The next
example shows how WebAudio control requests, encoded in HTTP-URLs, can be used
within Java Script:

...

<SCRIPT>

function play () {

waWindow =

window.open(’http://localhost:4444/liveaudio/pcm?PLAY\&SERVER=was’,

’’,’width=50,height=18’);

waWindow.write("<HR><P>Play</P><HR>");

}

function stop () {

waWindow.load(’http://localhost:4444/liveaudio/pcm?STOP\&SERVER=was’,

10);

waWindow.close();

}

</SCRIPT>

<BODY ONLOAD="play()" ONUNLOAD="stop()">

...

The play() and stop() functions shown in this example are interpreted upon a LOAD

and UNLOAD event. The play() function opens a small window, sends the control request
encoded in the HTTP-URL to the WebAudio client and writes the word “Play” in the new
browser window. The stop() function simply sends a HTTP STOP control request to the
client and closes the window.

User interfaces programmed in Java or any other general programming language is not
limited to use HTTP for stream control. These sophisticated programming languages are
capable of carrying out generic TCP communication. User interfaces based on program-
ming languages without support for HTTP connections8 need to implement either HTTP

8Java Script or Java, for example, have built-in support to open HTTP connections to send/receive
HTTP requests/responses.

4.1. APPLICATION ARCHITECTURE 121

or RTSP as stream control protocol. Extensional programming APIs or libraries providing
the basic protocol functionality of HTTP and RTSP significantly simplify the implementa-
tion of user interfaces. The advantages of using more sophisticated programming languages
are, firstly, that RTSP, which has shown to be the more sophisticated stream control proto-
col, can be used, and secondly, that the application has full control of the protocol engine
itself. The processing of the received responses messages is done entirely within the ap-
plication. In the case of Web browser based user interfaces, the treatment of the HTTP
responses is left to the Web browser.

If the user interface is implemented as a Java Applet [Co.va], the same reasoning can
be applied. In this case, however, the limitations of Java Applets need to be considered.
Applets are processed like Java Scripts within the context of a Web page. The byte code9 of
the Java program is not sent as part of the Web page. Only a reference to the Java Applet
(in form of URLs) is included in the Web pages. In the context of WebAudio Java Applets
have mainly one disadvantage compared to general Java applications. They can only open
socket connections to the Internet host from which they were loaded10. Therefore, unless
the Java Applet is loaded from the same host where the WebAudio client is executed
(normally the local host), the Applet cannot establish a connection to this machine (even
if it is the local host). This, however, is not a problem within WebAudio, since Java Applet
user interfaces can easily be served by the WebAudio client. The HTTP protocol support
of the WebAudio client, provides sufficient functionality to serve Web pages or Java byte
code.

Summarizing, one can conclude that the “open” application control interface of WebAudio
offers great flexibility to user interfaces. It enables, for example, simple integration of We-
bAudio into existing applications. Supporting the Web protocol HTTP as an application
interface protocol has the advantage of easy Web integration of user interfaces (based on
HTML, Java Script or Java). In addition, it enables the use of standard Web browsers
as a basic user interface. The real-time streaming protocol RTSP is supported to enable
sophisticated streaming control. Programming languages such as Java, C, C++, Pascal,
etc., but not Java Script, allow the implementation of user interfaces with comprehensive
stream control capabilities based on RTSP.

4.1.6 Scalability Considerations

Scalability is an important characteristic of group communication tools and conferencing
applications. Since human communication often takes place in groups, the question how
well an audio application scales in the number of participants is important.

The question of scalability has to be considered independently for sending and receiving
applications. The reason for this is that sending audio information to many listeners is

9Java programs are compiled to byte code which is interpreted by the Java Virtual Machine (VM)
during execution time.

10The Internet host which served the Applet byte code.

122 CHAPTER 4. THE APPLICATION: WEBAUDIO

a different issue than listening to audio information of many senders. For the former
procedure many every-day applications such as radio broadcasting, lecturing, etc. are
known. In contrast, for the latter procedure hardly any applications where people listen
to a large number of audio sources at the same time are known. Even human face-to-
face conversation suffers greatly if several people talk simultaneously. As a result one can
conclude that the scalability issue regarding the sending application must be differentiated
form the receiving application.

In order to use WebAudio as a “broadcast” communication tool, the server must be able
to support simultaneously a large number of receivers for the same flow. Since the first
version of WebAudio is limited to point-to-point or unicast communication between the
server and the client, the server application does not scale in the number of receivers. The
reasons for not considering point-to-multipoint or multicast communication (see section
2.1.1.3) are: First, multicast is currently only available on the virtual multicast network
known as the MBone. As discussed earlier, the performance of the MBone suffers greatly
due to the fact that multicasting is achieved by means of IP tunneling. Moreover, the
MBone is not widely deployed, and therefore it enables only a small portion of Internet
users to benefit from multicast support. Second, the additional implementation work to
support multicast would simple have exceeded the scope of this work. However, future
releases of WebAudio will consider multicast support.

The WebAudio server is designed to provide service from small to moderate groups. Scal-
ability depends mainly on the number of different encodings used, since the server has to
process the costly operation of encoding the audio frames for each different audio format.
Sending the packets several times (for each receiver) is computationally less expensive,
but might be limited by the available bandwidth. The relationship between the cost of
encoding and sending a stream is expressed in equation 4.4. The number of receivers is
expressed by the value N whereas the number of different encodings used at the same
time is determined by K. K is bound by the number of different codecs supported. The
equation provides a simplified processing cost estimate for the server.

OServer(N) =
K∑

k=1

O(Encoding[k]) + N × O(Sending) (4.4)

From this discussion one can conclude that due to the lack of multicast support the current
version of WebAudio does not support broadcast to large groups. However, small or
moderate groups (of the order of 30-50) can be served even with communication based on
unicast.

The WebAudio client, in contrast, scales worse than the server. The receiver needs to
perform the expensive processing of audio decoding for every received packet, since they
are part of different audio streams. This is expressed in equation 4.5.

OClient(N) = N × {O(Receiving) + O(Decoding) + O(Mixing)} (4.5)

4.1. APPLICATION ARCHITECTURE 123

As a result of this, it is clear why the WebAudio client can only support small groups of
senders of the order of 5-10. However, since conversations where many people talk at the
same time is usually not convenient, one can conclude that the small groups of senders
are in most cases sufficient. The limiting factors are the processing power to process
all the audio packets of the various sources and the network bandwidth to receive the
different streams at the same time. It should be noted that in the receiver case multicast
based communication resolves neither the network bandwidth limitation nor the decoding
processing problem at the receiver.

Apart from scalability problems, support for multiple concurrent audio streams at the
client and server also raises other issues, namely how to distribute packets to multiple
clients (without multicast communication) and how to process audio frames of several
sources. Section 4.2.6 and 4.2.8 discuss how packet transmission and audio frame mixing
is achieved within WebAudio.

4.1.7 Security Considerations

Special points of interest regarding the security of an application are the protocol interfaces.
In the case of WebAudio, the following protocol interfaces need to be considered: the
HTTP-based and RTSP-based control interface and the RTP/RTCP streaming interface.

The “open” control interface, in particular with respect to the WebAudio client, is currently
a major security hole, since the client application can by remote controlled by anybody by
means of HTTP or RTSP control requests. A simple technique to solve this security hole
would be to restrict access to the local host. Since this approach reduces the flexibility of
the application, an alternative approach is suggested: the HTTP and RTSP security mech-
anisms that provide secure access based on the user name and password encoded within
the request URL. The WebAudio server, in contrast, intends to provide public service
and therefore does not require access restriction. If limited access is required, the stan-
dard HTTP and RTSP security mechanisms are suggested as well. WebAudio client-server
stream control is, to some extent, protected from manipulation by third parties. The ran-
dom session identifier, generated by the server during initial stream setup and henceforth
used within every RTSP-based control message, prevents hackers from interfering audio
sessions.

The audio streaming interface provided by RTP/RTCP is secure due to the security mech-
anisms suggested by RTP and RTCP. For each audio stream, RTP uses also a randomly
generated session identifier which is transmit as part of the protocol header. Receivers
therefore accept RTP packets only if the session identifier matches and the sequence num-
ber is not wide of the mark. The session identifier is also used within the RTCP receiver
reports. Thus, the server only accepts RTCP reports which belong to a valid RTP session.

If WebAudio is to be used for transmission of secret audio data, encryption techniques
should be applied to protect against unauthorized data monitoring and insertion. In order

124 CHAPTER 4. THE APPLICATION: WEBAUDIO

to secure transmission channels, IP-level security mechanisms such as IPSEC [Atk95c] are
recommended.

As a result, one can conclude that the application design of WebAudio and the utilized
protocols have provision for secure audio transmission.

4.1.8 Summary

This section summarizes the application design and architecture of WebAudio. WebAu-
dio, the uni-directional real-time audio streaming application, is based on a client-server
architecture. The WebAudio client and server applications provide an “open” stream con-
trol interface which enables easy Web integration. WebAudio improves stream QoS by
means of resource reservation and adaptation. The multi-streaming capabilities enable the
applications to be used for audio conferencing.

The operation of WebAudio can by summarized as follows: The user interface, which is
invoked by the Web browser, either as a plug-in or as a helper application, controls the
client application by means of HTTP or RTSP. WebAudio uses RTSP for stream control
between a client and server.

The application design is modular with most modules are used within both, the client
and the server. While the network interfaces of the client and server applications are very
similar, the audio processing differs significantly. While the client requires an audio mixing
module in order to achieve the playback of simultaneous audio streams, the server needs
an audio transmission module to accomplish audio streaming to multiple receivers.

Communication between the user interface, the client and the server is achieved by numer-
ous protocols at different levels:

• At the network level, WebAudio supports either IPv4 or IPv6. Whereas audio stream-
ing can be achieved over both network protocols, stream control signalling is limited
to IPv4.

• Resource reservation is achieved by means of RSVP. WebAudio has built-in support
for standard and flow label based RSVP. Reservations are managed through the
RSVP interface known as RAPI.

• At the transport level, WebAudio utilizes TCP which provides an ideal service for
the transport of stream control traffic of RTSP and HTTP. UDP is used for audio
streaming. Since RTP facilitates media streaming, audio data traffic is transfered
over RTP-on-UDP. RTP’s control protocol RTCP is used to provide a QoS feedback
mechanism.

• At the application level, the WebAudio client and server can be controlled by either
HTTP or RTSP. A multi-protocol control interface facilitates stream control based
on both protocols.

4.2. IMPLEMENTATION ISSUES 125

The application interfaces of WebAudio can be described according to the supported ap-
plication level protocols. HTTP based stream control allows simple control from within
Web applications. Even a standard Web browser can be used as a basic user interface.
RTSP based stream control enables full stream functionality within WebAudio, however,
sophisticated user interfaces with support for RTSP are required. RTP which is used as
the streaming protocol provides the necessary information within its protocol header to
compute QoS feedback. RTCP receiver reports are used to return the QoS feedback to the
server.

WebAudio applications do not incorporate a conventional user interface. Instead, they
provide an “open” application control interface which offers great flexibility to external
user interfaces. The HTTP application control interface has the advantage of easy Web
integration of WebAudio user interfaces based on HTML, Java Script or Java. However,
the sophisticated streaming control mechanism, RTSP, demands the use of programming
languages such as Java, C, C++ and Pascal.

The scalability considerations lead to the following conclusions: Due to the lack of multicast
support, the current version of the WebAudio server only provides support for small or
moderate groups of the order of 30-50. The WebAudio client can only handle small groups
of senders of the order of 5-10. However, since conversation with many concurrent speakers
is not easy, small groups are in most cases sufficient.

With respect to security, it can be summarized that the application design of WebAudio
and the utilized protocols have provision for secure audio transmission.

4.2 Implementation Issues

This section describes in detail the design questions and implementation problems encoun-
tered during the development phase of WebAudio. The decisions along with the reasoning
and the solutions or work arounds to the problems are presented here.

4.2.1 Choice of Platform

In keeping with the application name, WebAudio aims to be used as an audio tool within
the WWW. The real-time audio streaming application is therefore destined for end user
systems such as PCs and user workstations. Since most of today’s end user systems run
Microsoft Windows – either Windows 95, 98 or NT – software releases for these platforms is
important. The second most deployed platform among Internet users is currently the free
Unix known as Linux. If the wide scale deployment of a software product is an important
consideration, the application should be available on these operating systems.

In general, applications should presuppose as little as possible from user systems and
support what the majority of user systems offer. IPv6 or RSVP, for example, cannot be

126 CHAPTER 4. THE APPLICATION: WEBAUDIO

assumed since it is still rarely used outside of research labs. In contrast, if applications aim
at studying experimental protocols, such as WebAudio which was aiming at exploring the
impact of IPv6 on QoS based real-time streaming, experimental protocols, still unknown
to the majority of users, cannot be avoided. Therefore, in the case of WebAudio, the choice
of the primary implementation platform was mainly determined by the availability of the
RSVP software with IPv6 support. Since the RSVP implementation with support for IPv6
was only11 available for FreeBSD, it was the operating system of choice for the first version.

To make provision for software releases for Microsoft Windows systems, WebAudio was
designed always bearing in mind that the code needs to be as platform independent as
possible. Compatibility with Microsoft Windows and Linux was the main concern. Com-
patibility between FreeBSD and Linux is easy to accomplish, since FreeBSD and Linux are
both closely related Unix implementation. Ensuring compatibility with Microsoft Windows
platforms is, however, non trivial.

The process model and the interprocess communication capabilities of Microsoft Windows
and Unix systems differ notably. The differences are often rooted deep down in the oper-
ating system architecture. The “fork” mechanism12 of Unix, for example, is a mechanism
that was considered but rejected since it is not supported by Microsoft Windows systems.
Also multi-threaded implementations can not simply be used in a cross platform manner
between Microsoft Windows and Unix systems, since the default thread support on both
systems is incompatible. Although both platforms support the POSIX thread standard
that offers a common API, the scheduling behavior of the different thread implementa-
tions differ greatly. This is an especially important issue with respect to performance and
time critical applications, such as real-time streaming applications. This led to the deci-
sion to implement WebAudio single threaded. Concurrent processing, such as processing
incoming requests and capturing data form the sound device, is achieved by preventing
synchronous or blocking system calls. All read and write operations are used in an asyn-
chronous manner. The BSD “select” mechanism13 is used to block the process until any
data or resources are becoming available for further processing.

Besides the difference in the process and thread handling, Microsoft Windows systems and
Unix systems also differ significantly in the way they deal with the application Input and
Output (I/O) (for example, the user interface and the sound device). A cross platform
implementation of a graphical user interface is particularly hard since both systems sup-
port different window systems, namely Windows and X Window. This inconvenience in
conjunction with the fact that WebAudio aims at easy integration within Web applica-
tions, led to the decision to abstain from a graphical user interface and instead designed
an “open” control interface14 based on HTTP and RTSP (see section 4.2.9). The interface

11As far as the author was aware at the time.
12The system call spawns a new user process with the same execution environment as the parent process.
13The “select” system call blocks until further data or resources become available. On return it indicates

the interface which is ready for further processing.
14By “open” is meant that the control interface can be accessed by means of a control protocol.

4.2. IMPLEMENTATION ISSUES 127

to the sound device is another heterogeneity which must be resolved within WebAudio.
Since the difference is also rooted deep down in the operating system, and it cannot simply
be bypassed as in the case of the user interface, incompatibility has to be accepted here.
To reduce the problem, an object oriented Audio class serving as an abstraction layer be-
tween the application and the system interface to the sound device was developed. This
approach simplifies the code portability, since only the Audio class needs to be maintained
for different platforms whereas the core implementation of the application remains the
same.

As already mentioned, the first version of WebAudio was implemented on FreeBSD. The
source code port to Linux was straight forward. The changes were limited to adapting a
few system calls and including a few different header files. The Unix Sound System (USS),
provided by most Unix distributions as interface to the low-level sound device, simplified
the port.

Since the author believes that support for Microsoft Windows systems is crucial for the
promotion of WebAudio, support for these systems is planned in future releases. The source
code port to Microsoft Windows is expected to be easily achievable due to the thorough
application design and the considerations regarding platform independence. The main
work is expected to be the port of the Audio class to support Windows sound systems,
such as DirectX.

4.2.2 Choice of Programming Environment

The choice of the programming environment for the implementation of WebAudio was fairly
easy. After considering all the constraints, the availability of programming languages and
the advantages and disadvantages of these languages, it was obvious which programming
language suits best.

The constraints which had to be considered were that (a) the programming language has
to be available for FreeBSD since it was chosen as the implementation platform (see section
4.2.1) (b) the compiler must be freely available and (c) the programming environment needs
to be platform independent since the WebAudio source code should be easy to port. These
constraints narrow the choice of programming languages down mainly to the programming
language C. Several C compilers with cross-platform support are are freely available. One
of the main C compilers which is also freely available for most platforms is called GNU
GCC. Apart from C, the GNU GCC compiler supports also the Object Oriented (OO)
programming language C++.

Since C++ supersedes the functionality of C and offers in addition all the advantages of
OO programming, such as class inheritance, data encapsulation, etc., it was selected as
programming language for the implementation of WebAudio. OO programming also has
the benefit of simplifying the reuse of source code since object classes are, if designed
properly, fairly independent from the source code context.

128 CHAPTER 4. THE APPLICATION: WEBAUDIO

Socket

RtcpPacket

RtpPacket

UdpSocket

Multi-Mixer plexer

Streams
RtpSender

TcpServerClient

Response

Client Request Tcp

Socket

RtpReceiver

Playout Delay

RtcpPacket

RSVPRtpPacket

UdpSocket

Packet Queue

Client Streams

Estimation

Rtcp
Receiver

UdpSocket

RtcpPacket

RSVP

WebAudio Client WebAudio Server
Virtual Classes

Socket Request

ArgumentConfigFileDebug ArgumentConfigFileDebug

Audio Audio

TcpClient

Tcp

Socket

TcpServer

Response

Server Request Tcp

Figure 4.6: Object Class Structure of the WebAudio Client and Server Application

The object class structure of the WebAudio client and server implementations are illus-
trated in Figure 4.6. This object class overview illustrates how well the application struc-
ture is explained simply by viewing the object classes and their relations. The overview
also shows how well the source code could be reused in the case of WebAudio due to the
OO programming principles of data encapsulation and inheritance. The arrows in Figure
4.6 indicate the parents and their child classes. Most object classes are used in the client
and server applications.

Summarizing, one can conclude that the choice of the object oriented programming lan-
guage C++, and in particular the freely available GNU GCC compiler, has proved bene-
ficial.

4.2.3 The WebAudio Client: Plug-In vs. Helper Application

The first implementation attempt of the WebAudio client investigated to realize the appli-
cation as a Web browser plug-in15. Since the WebAudio client application is intended to
be used within the WWW, the extension of the Web browser seemed to be an elegant way
to integrate WebAudio.

15A plug-in is in general an application extension in form of a Dynamic Link Library (DLL) or shared
object library that adds functionality (for example, another en-/decoder) to the application.

4.2. IMPLEMENTATION ISSUES 129

Implementing the client application as a Netscape browser plug-in, however, soon showed
the limits of such plug-ins. Since Netscape plug-ins are executed within the Web browser’s
main process – no separate thread or process is executed – it is impossible to control
the network communication and the sound device within WebAudio in an appropriate
manner. Plug-ins simply have no sufficient control on the program flow because they are
merely built of a few functions that are called upon certain Web browser events. As a
result, synchronous commands such as the “select” system call cannot be used since they
would block the whole Web browser process. Moreover, the main intention of Web browser
plug-ins is to process data which is delivered in-band by HTTP. A typical example of a Web
browser plug-in is a PDF viewer. Upon a HTTP request of a PDF document, the browser
passes the Entity Body of the HTTP response to the plug-in which then displays the
PDF document in response. In the case of WebAudio, however, the problem is completely
different. The audio stream data is not transmitted in-band by HTTP. As a result the
WebAudio client must be able to actively listen on a socket port. Since the plug-in has no
real control on the program flow, it cannot listen on the port. One solution for this problem
could be the use of a plug-in threads which actively listen on the receiving port. However,
this approach failed since the FreeBSD release of Netscape’s Web browser (Communicator
4.07) is not linked with thread save libraries16 Moreover, the thread based solution is not
suitable for several reasons discussed in section 4.2.1.

In addition, Web browser plug-ins have the disadvantage that they rely on the proper
operation of the browser. If the browser malfunctions (for example, hangs for a moment
due to an unresolved DNS lookup or an unconfirmed message box), the plug-in is also
hindered from proper operation.

Another important argument against implementing the WebAudio client as a Web browser
plug-in is the compatibility and support of such plug-ins. Not only are plug-ins usu-
ally developed especially for one Web browser, such as Microsoft’s Internet Explorer17 or
Netscape’s Communicator, they also behave differently on miscellaneous platforms (if avail-
able at all18), due to the different Web browser implementations. Although, for example,
the plug-in interface of Netscape’s Web browsers is the same on all platforms, noticeable
differences in the behavior of the Communicator 4.07 for Windows 95 and FreeBSD are
observable.

Helper applications, in contrast, are an alternative method to extend the functionality
of Web browsers. Helper applications are stand-alone applications that are executed by
the Web browser upon receipt of a certain MIME type. The Entity Body of the HTTP
response is passed to the application through the standard input interface.

Helper applications have several advantages over plug-ins. First, they are supported by
almost any Web browser – mainly due to the simple interface. Second, they are executed

16Such libraries are able to handle multiple threads without interfering with re-entrant system calls.
17In the context of Microsoft’s Internet Explorer plug-ins are usually called ActiveX controls.
18Microsoft’s Internet Explorer is not available for many other operating systems apart from the Mi-

crosoft Window systems.

130 CHAPTER 4. THE APPLICATION: WEBAUDIO

in a separate process. Thus, the application has full control over the program flow which
greatly simplifies the problem of concurrent processing of time-critical operations, such
as listening on a receiver port while decoding and playing back the audio data in time.
Third, since helper applications are executed independently from the Web browser process,
problems caused by differences in cross platform browser implementations do not arise.

The main drawback of using helper applications is that the Web integration is not as
thorough. While plug-ins are up-called on relevant Web browser events (for example,
window closed, page unload, etc.), helper applications are not informed. This disadvantage,
however, is less significant in the context of WebAudio since the client application offers
a HTTP based control interface. Java Script, for example, can be used to forward Web
browser events to the client application by means of HTTP-URL requests.

In retrospect, the discussion of this section has shown that the implementation of the
WebAudio client as a helper applications has significant benefits over the implementation
as a Web browser plug-in.

4.2.4 Real-Time Audio Processing and Task Scheduling

During the implementation phase of WebAudio, problems regarding the scheduling of con-
current tasks (for example, reading from the socket and writing data to the sound device)
with respect to their time constraints were experienced.

In order to illustrate the problem, a short description of the task scheduling and the strict
time constraints of real-time audio is provided. Interactive real-time audio streams use,
according to the discussion in section 3.1.1, very small packets, or in other words only
few audio samples, to minimize the end-to-end delay caused by packetization. In practice,
real-time audio tools often use a packet size that encompasses as little as 20 ms or 40 ms
audio. From now on this time is referred to as Packet Playout Time (PPT). The PPT
is usually a multiple of the audio frame length (see also section 3.1.1). As a result, the
WebAudio server, on the one hand, needs to capture, encode and send an audio packet
within any PPT period. The client, on the other side, needs to receive, decode and playout
the audio packet within this interval. The problem becomes obvious when the process
scheduling granularity of common operating systems is examined. Unix systems usually
have maximum scheduling units of approximately 5-20 ms. This means that all other
“runnable” processes19 are scheduled (at the most the maximum scheduling unit) before
the WebAudio process is activated again. Fortunately most processes are in blocking state
and “runnable” processes are often consuming only small amounts of their processing time
such that the scheduling delay of the WebAudio process is usually short enough to meet
the strict time constraints of real-time audio. However, if the machine load is high or time

19All processes, which are neither “blocked” while waiting for a resource nor “stopped”, are referred to
as “runnable”.

4.2. IMPLEMENTATION ISSUES 131

consuming operations (for example, disk access) are scheduled, deadlines of the real-time
processing within WebAudio might be exceeded.

An important implementation issue is that the task that needs to be processed next is
always scheduled first. Rather than spending the processing time on a task which is ahead
of its time schedule, the most urgent task should be processed first. For example, rather
than reading the whole receiving buffer or en-/decoding several packets of a queue at once,
it is more important to play back the packets whose playout time have exceeded.

Since the processing of the audio data within the WebAudio client and server differ signif-
icantly from each other, they are considered separately here.

The implementation of the server application regarding to scheduling is less critical than
the client application. Since the data flow is predestined by the audio capturing module –
only one time-critical module – the application can simply block on the sound device until
a new audio frame can be read. As soon as the “read” call returns, the frame is encoded.
If sufficient audio frames for a packet are captured, the packet is sent to all receivers of the
stream. Before the server process blocks again (while waiting for the next audio frame to
be read), it processes pending stream control requests.

The client application, in contrast, requires a more careful design with respect to task
scheduling. The data flow is predestined by the audio playback module and the RTP
receiver module – two independent, time-critical modules which have to be processed con-
currently. The audio playback module has to playout a new frame periodically. The time
interval is determined by the frame length. Since the lack of audio samples in the sound
device playout buffer immediately leads to disturbing crackles in the signal, the client has
to make sure that the playout buffer never runs empty. The second time-critical module is
the RTP receiver. As soon as a new audio packet arrives at the UDP port, the packet must
be unpacked, decoded and queued. The playout time, depending on the current playout
delay estimation, is assigned. As a result, the client’s task scheduler must be designed
such that it guarantees to meet the time constraints of both time-critical modules. The
use of blocking system calls, while waiting for new data being received, on the one hand,
and waiting for the sound device to play the next frames, on the other hand, would not
provide concurrency.

The asynchronous “select” mechanism cannot be used within the audio playback module
since the system call would return as soon as a few samples could be written to the sound
device. This, however, would be virtually at any time, since the sound device permanently
plays audio samples from the buffer. Recent work in this area [Riz97] extended the sound
device driver of USS such that the synchronous “select” behavior can be programmed to
return only if a minimum threshold is under-run. However, having a competing “select” call
for both time-critical modules, is not a good solution. The module invoking the blocking
“select” call first would block the process until the resources becomes available.

Figure 4.7 illustrates how the time-critical task scheduling problem is solved within the
WebAudio client.

132 CHAPTER 4. THE APPLICATION: WEBAUDIO

Write Frame

Check Buffer Network Select

Read Packet

if new packet
were received

otherwise
if buffer time >>

opt buffer time

(optimal buffer time + max scheduling unit)

Network ModuleAudio Module

Scheduler

WebAudio Client

if buffer time >

Sleep

Figure 4.7: Time-Critical Task Scheduling within the WebAudio Client

The client implementation makes use of the sound device driver feature that determines
the amount of audio samples in the playout buffer 20. Based on the scheduling behavior
of the system, the client computes dynamically the optimal buffering time of frames in
the sound device such that the buffer hardly runs empty. This sophisticated algorithm
“guarantees” that the audio signal is not permanently disturbed due to buffer under-runs
caused by scheduling irregularities in the client system.

The calculation of the optimal buffering time is accomplished by the following algorithm:
based on the past scheduling behavior and a threshold percentage Tsuccess, the optimal
buffering time is estimated such that Tsuccess percent (usually Tsuccess > 95%) of the past
scheduling cycles were re-scheduled in less or equal time than the optimal buffering time.
This adaptive mechanism estimates the optimal buffering time depending on changes in the
scheduling behavior. Such changes are, for example, caused by an increase or decrease of
the processing load. The adaptive behavior guarantees optimal performance since it tries
to keep the buffering delay and thus the total end-to-end delay as small as possible. A
more detailed description of this adaptive buffering time estimation is provided in section
4.2.5 where the same algorithm is used for the estimation of the optimal packet playout
delay.

Experiments with FreeBSD and Linux on different system architectures, such as Intel
Pentium II, Mobile Pentium 166 and Intel Pentium 90, have shown that the adaptive
buffering time estimation operates well for these systems. Debug traces indicated that the

20The Unix device control call “ioctl” allows to request the number of bytes that can be written and the
total buffer size of the low-level sound device driver.

4.2. IMPLEMENTATION ISSUES 133

algorithm properly adapts to different levels of the system load. Since process scheduling
behavior is highly dependent on the operating system, the algorithm might have to be
adjusted when the application is ported to Microsoft Windows systems. The buffering
time estimation algorithm resides in the Audio class which has to be specially ported in
any case.

In retrospect, one can summarize that the implementation of the task scheduling within
WebAudio, and in particular the client application, was not straightforward but has been
successfully solved. Using an adaptive buffering time estimation to compensate for the
dynamics within process scheduling has been proven to be a useful enhancement.

4.2.5 Receiver Buffering

Receiver buffering is required within real-time streaming applications in order to com-
pensate for the jitter caused by scheduling irregularities in the sending system and the
delay variations experienced by individual packets along the network transmission path
(see section 1.2.6 and 3.1.4 for further discussions).

Since the scheduling and jitter varies highly over time due to changes in the processing and
the network load, it is advantageous to use a dynamic receiver buffering mechanism. The
enhanced adaptive playout delay estimation algorithm used within WebAudio is based on
the work which has been done at The algorithm dynamically adapts the buffering time
of the packets, or in other words their playout delay, by considering the jitter experienced
by former packets. The receiver buffering module maintains two playout delay values: first,
the optimal playout delay which is constantly changed upon arrival of new packets, and
second, the currently active playout delay. The latter value is used as long as the receiver
buffer does not under-run. When the receiver buffer runs empty, the active playout delay
value is adjusted to the optimal playout delay estimate. The receiver buffer runs empty
when no packets arrive within the buffering time due to either packet loss, high end-to-end
delays, or silence periods. Changing the active playout delay while packets are still in
the buffer would result in interruptions of the output signal due to “inserting gaps” or
“overlapping audio frames” which leads to buffer overflows in the sound device. However,
when the receiving buffer runs empty, a change to the active playout delay is not noticeable,
and therefore, this approach is applied.

The playout time of incoming packets is determined by the timestamp of the RTP header
and the currently active playout delay according to equation 4.6. When the P layoutT ime
of a packet exceeds, the packet is dequeued and decoded (see section 4.2.8).

P layoutT ime = PacketT imestamp + ActiveP layoutDelay (4.6)

Before the extended playout delay estimation which has been developed in the context
of this work is described, the original playout delay estimation from University of Mas-
sachusetts (UMASS) [MKT98] is briefly explained. The algorithm records a large number

134 CHAPTER 4. THE APPLICATION: WEBAUDIO

of past packet end-to-end delays. It is suggested that the last 10000 packet delays are
taken into consideration. The algorithm calculates the optimal playout delay based on a
threshold percentage called Tsuccess. A value of Tsuccess = 95% would result in a playout
delay such that at least 95% of the packets arrive before their playout point is exceeded
whereas 5% of the packets arrive late.

Since packets sometimes experience huge delays (and therefore huge delay variations) due
to temporary congestion, the algorithm has a delay spike detection mechanism that allows
spike delays to be specially considered. If a delay spike is detected, the algorithm simply
suggests to use the delay of the first packet. This simple technique results in good results
during “spike” periods, since the analysis of Internet traffic has shown that the delays of
subsequent packets of a “spike” decrease linearly [MKT98]. Delays of “spike” packets are
not recorded and considered in the standard delay estimation to prevent these delays from
making the optimal delay estimation ambiguous. As soon as the end of a spike is detected,
the normal playout delay estimation is continued.

Although [MKT98] shows that the UMASS algorithm performs well, two problems were
recognized. Both problems are solved successfully in the improved playout delay estimation
algorithm used within WebAudio. The first problem of the original algorithm is that a large
amount of memory is required simply to store the past delay values. The authors suggest
to consider the last 10000 delays for the playout estimation. These delays encompass a
time period of about 3.5 minutes if a PPT of 20 ms is assumed. To have more stable
results, it is necessary to consider the packet delays of the last few minutes. This prevents
the results from being fuzzy due to temporary irregularities in the network delay. The
algorithm developed within WebAudio records only the last 1000 packet delays. In order
to account for such temporary irregularities, an array (a size of ten is suggested) is used
to store the last optimal playout delays. The optimal playout delay is then calculated by
weighting recent optimal playout delays based on their temporal ordering. (see equation
4.7).

P layoutDelay =

∑N
i=1 (i × PastP layoutDelay[i])∑N

i=1 i
(4.7)

This formula is also known as the decay average calculation. It should be noted that the
formula assumes that the array of past optimal playout delays is sorted according to the
time when the delay estimates where computed. The oldest delay estimate is stored in the
first field.

The advantages of this approach are that less memory is required to take into account a
long history of past packet delays and that the playout delays experienced in the recent
past are weighted higher. This weighted approach to compute the optimal playout delay
also solves the second problem of the original algorithm. It did not respond well to trend
changes in the network’s QoS. The original algorithm needed several minutes to react to

4.2. IMPLEMENTATION ISSUES 135

a QoS change in the network. The weighted approach in our solution, however, improves
the responsiveness by weighting the latter results higher than the former.

Experiments with WebAudio have shown that our improved playout delay estimation algo-
rithm performs well and requires only a fraction of the memory of the original algorithm.
Moreover, it has been shown that the algorithm adapts faster to trend changes in the
network without loosing accuracy during temporary irregularities in the network delay.

4.2.6 Audio Capturing, Encoding and Packet Transmission

The audio capturing and encoding is processed within the Audio class. This class is espe-
cially developed for each platform to account for differences in the sound device interface
and the audio codec support of the operating systems. The class provides a uniform inter-
face for the WebAudio applications. Thus, it can be seen as an abstraction layer for the
low-level sound system provided by the operating system.

According to the discussion in section 4.2.4, the WebAudio server reads the sound samples
synchronously from the sound device. If a complete audio frame is read successfully,
the transmission module is called by passing a pointer to the new audio frame. The
transmission module encodes the audio frame into the set of audio formats currently in
use. As soon as enough frames for a packet of this audio format are encoded, the RTP
header is attached and the packet is sent to every registered WebAudio client.

Figure 4.8 illustrates how the audio capturing, encoding and packet transmission is pro-
cessed by the WebAudio server.

The transmission mechanism used to support group communication or even audio broad-
cast obviously does not scale in the number of group members. Section 4.1.6 provides an
in-depth discussion on the scalability issues. The maximum number of streams processed
by the WebAudio server is limited by the processing power of the server machine and the
available bandwidth on the network. Within the period of one PPT, the server must be
able to encode and transmit all the packets. Since the encoding of the audio frame needs
to be done only once for each audio encoding used, only the simple processing of sending
multiple packets does increase linearly with the number of concurrent streams (compare
with equation 4.4). As a result, normal user workstations can handle a moderate number
of streams. Experiments with WebAudio have shown that our test machine, a Pentium II
with 233 MHz running FreeBSD, can easily handle 40-50 stream simultaneously.

4.2.7 Audio Codecs

In the first version of WebAudio only two audio encodings, namely PCM (Pulse Code
Modulation) and GSM (Global System for Mobile communication) [C+89] are supported.

136 CHAPTER 4. THE APPLICATION: WEBAUDIO

GSM

Transmitter

Packetizer

Encoder PCM

RTP Audio Streams

Audio Recorder Sound Device

Audio Frame

Encoded Frame

RTP Packet

Demultiplexer Demultiplexer

Figure 4.8: Audio Capturing, Encoding and Packet Transmission within the WebAudio
Server

In future releases of WebAudio several new codecs are planned to be included to cover the
full range from low-bandwidth voice to high-quality sound codecs.

Adding new audio codecs to WebAudio is fairly simple, since the Audio class is designed
bearing in mind that new codecs will be added. The code changes are mainly restricted
to the Audio class where the encoding and decoding function calls of the individual codecs
reside. In addition, the availability of a new codec must also be introduced to the overall
application by announcing a new audio resource.

Since the support of audio codecs is highly dependent on the operating system 21, the
Audio class has provision to easily add new audio codecs. The audio encoding and decoding
functions reside in the Audio class since this class needs to be ported to each individual
platform in any case.

21Some systems, for example Microsoft Windows, have a wide range of audio codecs included in the
operating system distribution.

4.2. IMPLEMENTATION ISSUES 137

4.2.8 Frame Decoding, Mixing and Audio Playback

The WebAudio client consists, apart from the receiving module, of an audio mixing and
playback module. Since the WebAudio client is intended for use as a communication tool
for small groups, it must be capable of receiving and processing multiple audio streams
simultaneously.

Standard sound devices, however, support only simplex or duplex sound I/O. Simplex
mode is limited to one channel which is shared time-wise for sound input and output
whereas duplex mode allows playing and recording of sound simultaneously. Applications
which need to playout multiple audio streams at the same time must implement a sound
mixer. A sound mixer simply merges audio samples of multiple streams into one sample
representing the overlayed sound. Formula 4.8 determines how the mixed audio sample a′

is computed from the different audio samples an of the N streams:

a′ =

∑N
n=1 an

N
(4.8)

The processing of the audio stream at the WebAudio client can be described as follows.
First, when the receiving module gets a new packet, the module assigns the playout time
based on the currently active playout delay of the stream (see section 4.2.5) and then puts
the packet in the receiver buffer. The playback module checks periodically the buffer of
the sound device in order to prevent it from running empty. This time-critical process is
described in detail in section 4.2.4. If the sound device needs another frame of samples, the
playback module checks the receiver buffers for packets whose playback point is exceeded.
If multiple audio streams are received simultaneously, all packets whose playout time is
exceeded need to be mixed before the playback. Therefore, the mixer initiates first the
decoding of the audio packets by calling the individual decoding methods within the Audio
class. After decoding the frames of the different streams, they are mixed together and then
passed to the sound device. If no packet is ready to be played back, the last audio frame
is played again, up to three times, and after that, silence frames are inserted to fill the gap
in the audio signal. In future versions of WebAudio, support for playing back background
noise rather than silence is planned since this is commonly perceived to be more natural
[H+95].

Figure 4.9 illustrates how the packets of the receiving buffer are decoded, then mixed and
finally passed to the sound device.

Although the audio mixer enables the WebAudio client to receive multiple streams simul-
taneously, and hence, allows multi-user conferencing, it does not scale. The maximum
number of streams is mainly limited by the processing power of the end system. The client
host must be able to decode and mix all received packets of the different flows within one
PPT. If the number of concurrent flows exceeds the maximum limit, the client cannot
complete the processing within one PPT period. However, according to the discussion in

138 CHAPTER 4. THE APPLICATION: WEBAUDIO

Time

Time

Time

Time

Time

Time

M i x e r

Audio Frame

Delay

GSM PCM

Sound Device

Encoded Frame

Receiver

RTP Audio Stream

Playout Delay
Estimater

Buffer

Decoder

Mixer

Audio Playback

Delay

RTP Packet

Figure 4.9: Packet Receiving, Audio Decoding, Frame Mixing and Sound Playback within
the WebAudio Client

section 4.1.6, two-way communication among several users is only useful for small groups.
Experiences with WebAudio have shown that a client running FreeBSD on a Pentium II
with 233 MHz can easily handle 5-10 streams at the same time.

4.2.9 Multi-Protocol Control Interface

With respect to the discussion in section 4.1.4 WebAudio provides two “open” control
interfaces, namely HTTP and RTSP. Support for the two different stream control protocols
might not seem worth the extra development work. However, HTTP and RTSP are so alike
that the additional source code to support both protocols merely increases the size of the

4.2. IMPLEMENTATION ISSUES 139

control interface module. Since RTSP was designed in the style of HTTP, the protocol
syntax is so similar that a standard HTTP parser can be used to parse RTSP. Merely a
new protocol type and a few additional header fields need to be added. Table 4.3 shows
the common request format of both protocols (compare also with section 2.4.1 and section
2.4.2).

Request = Request-Line
*(General-Header | Request-Header | Entity-Header)
CRLF
[Entity-Body]

Request-Line = Method SP URL SP Protocol-Version CRLF

Table 4.3: Syntax of RTSP and HTTP Requests

The Protocol-Version in the Request-Line is used to identify the protocol: HTTP or
RTSP. The Method contains either the HTTP method GET22 or the RTSP methods (see
Table 2.9). The URL, used to identify the audio resource, varies slightly depending on the
protocol.

The syntax of the response messages of HTTP and RTSP is also very similar. The differ-
ences are that the response codes and messages vary – RTSP has a few additional response
codes to indicate request processing problems (compare with Table 4.1 and 4.2) – and a few
additional header fields (for example, the Session and Transport field) are introduced.

Moreover, apart from the protocol syntax of HTTP and RTSP, the protocol semantics
of these protocols are also very similar. It is described here, how WebAudio manages the
different semantics of both stream control protocols. Since the stream control functionality
of RTSP supersedes the functionality of HTTP with respect to stream control (compare
with section 2.4.3), WebAudio simplifies the control message processing by mapping HTTP
control requests onto RTSP requests. Thus, when the WebAudio server or client receives a
HTTP based control request, it maps the request onto the corresponding RTSP request(s).
Table 4.4 shows the HTTP→RTSP mapping of the HTTP stream control requests that
are currently supported by WebAudio.

HTTP Request → RTSP Request(s)

PLAY → SETUP
PLAY

STOP → TEARDOWN

Table 4.4: Mapping of HTTP Requests to RTSP Requests

22WebAudio only uses the GET method of HTTP.

140 CHAPTER 4. THE APPLICATION: WEBAUDIO

The following example shows how the WebAudio client makes use of the HTTP→RTSP
mapping in the processing of HTTP requests received from the user interface. The HTTP
requests are transformed into RTSP requests and forwarded to the WebAudio server.

The HTTP request

GET /liveaudio/gsm?PLAY&SERVER=webaudio.lancs.ac.uk:4444&

PORT=8001 HTTP/1.0

[CRLF]

is mapped onto the following RTSP requests

SETUP rtsp://webaudio.lancs.ac.uk:4444/liveaudio/gsm RTSP/1.0

CSeq: 120

Transport: RTP, unicast, client port=8001

and

PLAY rtsp://webaudio.lancs.ac.uk:4444/liveaudio/gsm RTSP/1.0

CSeq: 121

Session: 3213221

Range: npt=0-

The SERVER parameter of the HTTP request indicates the RTSP server which offers the
audio resource /liveaudio/gsm. It is therefore used to specify the host name in the
RTSP-URL. The PORT parameter indicates the receiving port of the client application.
As a result, it is used within the Transport field of the RTSP request to negotiate the
transport mechanism and the protocol ports. If the SETUP request could be processed
successfully, the PLAY request, specifying the time range Range for live sources npt=0-23,
is initiated.

The HTTP→RTSP request mapping has the following implications for the response pro-
cessing: First, in the case of an unsuccessfully processed request, the WebAudio client
needs to map the RTSP error code to the “closest” HTTP error code in meaning and
return it to the user interface. Second, if a single HTTP request is mapped onto two RTSP
requests, the WebAudio client has to return a HTTP error if either of the RTSP requests
failed; otherwise the HTTP acknowledge (response code 200) is sent back.

Summarizing, one can conclude that the multi-protocol control interface within WebAudio
was very easy to accomplish due to the similarity of HTTP and RTSP regarding syn-
tax and semantics. The HTTP→RTSP request mapping facilitated the implementation
significantly.

23This specifies the time range from now onwards.

4.2. IMPLEMENTATION ISSUES 141

4.2.10 Summary

This section summarizes the implementation issues that were encountered during the de-
velopment phase of WebAudio.

Choice of Platform: Even though the first version of WebAudio only supports FreeBSD
and Linux, the client and server applications are designed portability to Microsoft
Windows operating systems in mind. For platform independence, WebAudio (1) is
based on a single threaded processing model, (2) provides an “open” control interface
that simplifies cross-platform user interfaces, and (3) uses its Audio object class as
an abstraction layer to the low-level sound device and OS dependent audio encoders.

Choice of Programming Environment: WebAudio is implemented based on the
programming language C++. The freely available GNU GCC compiler was used. The
OO principles of inheritance and data encapsulation have proven to be particularly
beneficial with regard to re-usability of source code.

Plug-In vs. Helper Application: Implementation of the WebAudio client as a helper
application has several advantages over a Web browser plug-in: (1) helper appli-
cations have full control on the program flow, (2) they do not rely on the proper
operation of the Web browser, (3) helper applications are supported by most Web
browsers, and (4) differences in cross platform browser implementations are not an
issue.

Real-Time Audio Processing and Task Scheduling: Task scheduling within We-
bAudio, and in particular the client application, was not straight forward, but has
been resolved successfully. Adaptive buffering time estimation to compensate for the
dynamics of process scheduling has proven to be a useful enhancement.

Receiver Buffering: As a receiver buffering mechanism, an extended version of the
adaptive playout delay estimation of [MKT98] was developed which requires only a
fraction of the memory of the original algorithm and adapts faster to trend changes
in the network without losing accuracy.

Audio Capturing, Encoding and Packet Transmission: Transmission mechanisms
based on single unicast streams for every receiver do not scale. However, since the
transmission module encodes the audio frames only once for every audio format in
use, merely the simple processing of sending multiple packets is required. As a result,
normal user workstations can handle a moderate number of streams.

Audio Codecs: Even though WebAudio currently supports only PCM and GSM, the
Audio class has provision for new codecs. In future releases, support for the full
range from low-bandwidth voice to high-quality sound codecs is planned.

142 CHAPTER 4. THE APPLICATION: WEBAUDIO

Frame Decoding, Mixing and Audio Playback: Although the audio mixer enables
the WebAudio client to receive multiple streams simultaneously, it does not scale.
Since the client must decode all received packets individually, the maximum number
of streams is primarily limited by the processing power of the end system. Thus,
normal user workstations can only handle a small number of streams.

Multi-Protocol Control Interface: The multi-protocol control interface, offering great
flexibility to user interface developers, was very easy to build due to the similarity
of HTTP and RTSP regarding syntax and semantics. The HTTP→RTSP request
mapping facilitated the implementation.

4.3 Summary

This chapter describes the design and architecture of the WebAudio server and client
and provides a discussion on the implementation issues that were encountered during the
development phase.

The main characteristics of the real-time audio streaming application WebAudio can be
summarized as follows:

• WebAudio is based on an asymmetric, client-server based architecture which enables
simplex audio streaming.

• The application was carefully designed emphasizing source code portability among
Unix and Microsoft Windows operating systems.

• Support for multiple audio encodings is provided.

• WebAudio operates within IPv4 and IPv6 networks.

• Network level QoS according to the IntServ architecture is supported based on the
resource reservation protocol RSVP.

• Audio streaming is accomplished based on RTP. QoS feedback is provided by means
of RTCP.

• Adaptive receiver buffering which takes current network QoS characteristics into
account, is applied to compensate for the jitter.

• The WebAudio client and server are capable of managing multiple streams simul-
taneously. The server provides service from small to moderate groups, whereas the
client is limited to small groups.

• The “open” multi-protocol control interface enables out-of-band stream control based
on HTTP and RTSP.

4.3. SUMMARY 143

• WebAudio user interfaces which control the applications through the control interface
can be easily integrated within Web applications.

The important findings of the development and implementation of WebAudio can be sum-
marized as follows:

• The implementation based on the object oriented language C++ was in particular
profitable as regards the re-usability of source code within the client and server. Most
object classes could be used in both applications.

• The multi-protocol control interface was very easy to accomplish due to the similarity
of HTTP and RTSP with respect to syntax and semantics.

• The enhanced adaptive playout delay estimation which was developed within Web-
Audio requires only a fraction of the memory of the original algorithm and adapts
faster to trend changes in the network without losing its accuracy.

• The choice of implementing the client as a helper application has proven to be ben-
eficial especially with respect to the processing of time-critical audio data.

Chapter 5

Experiments

This chapter presents a series of experiments performed with the WebAudio application.
These experiments can be divided into three groups. The first group of experiments verifies
the proper operation of WebAudio within various network environments. The QoS feed-
back mechanism offered by the RTP/RTCP implementation in WebAudio is exploited to
analyze the network QoS received by the application when used in these network environ-
ments and along different transmission paths. The second group of experiments validates
the resource reservation support of WebAudio. The extended RSVP implementation which
deploys the IPv6 flow label is used within the experiments. The third group of experiments
includes a theoretical analysis and a set of measurements showing the difference of packet
classification1 based on RSVP for IPv4, IPv6 and IPv6 with flow label support. A perfor-
mance comparison of all three packet classification approaches shows the benefits of IPv6
flow labels.

5.1 QoS Analysis in various Network Environments

This section examines the network QoS received by WebAudio when used along different
transmission paths and operated in different networks, namely in the public Internet (IPv4),
in pure IPv6 networks and in the experimental, virtual IPv6 network (6Bone).

The experiments in real IPv6 networks were limited to experiments within the IPv6 testbed
at Lancaster University 2, since today’s public networks do not offer IPv6 network commu-
nication across wide-area networks. The 6Bone, however, is especially designed for IPv6
experiments across wide-area networks. It is currently used to test new software releases
that operate on IPv6. Since the 6Bone is only a virtual network that inter-connects IPv6

1Packet classification is according to the discussion in section 2.3.1 one of the required tasks within
resource reservation.

2IPv6 Resource Centre at http://www.cs-ipv6.lancs.ac.uk/

145

146 CHAPTER 5. EXPERIMENTS

networks by tunneling the IPv6 traffic across the IPv4 Internet, it is not suitable for net-
work performance measurements. Therefore, the 6Bone experiments presented here do not
aim to compare the network performance with the other approaches. It is obvious that
the 6Bone performs equally or even worse in comparison to IPv4 on the same path since
IPv6 packets are simply tunneled through IPv4. The 6Bone experiments are included to
validate the proper operation of WebAudio across wide-area IPv6 networks. Furthermore,
a comparison of network QoS measurements along the same network path but via different
protocols, namely IPv4 and IPv6, is interesting (see section 5.1.2). The 6Bone experi-
ments are limited to one remote site since access to a Linux or FreeBSD host at a remote
6Bone site was only available at BT Labs, Ipswich (U.K.). The experiments on wide-area
IPv4 networks were performed between Lancaster University and the remote sites at the
University of Ulm (Germany) and BT Labs.

The experiments presented here demonstrate that WebAudio operates well in IPv4 and
IPv6 network environments. The resource reservation capabilities of WebAudio are demon-
strated later in section 5.2.

General Experimental Setup

The setup for the different experiments presented within the next sections is fairly similar.
Figure 5.1 illustrates the general setup. The WebAudio server, on the one hand, operates
on a local machine, a standard PC running FreeBSD 2.2.5, of the IPv6 testbed at Lancaster
University. The machine is configured to support both IPv4 and IPv6 as network protocols.
This enables the operation of WebAudio in both modes. The WebAudio client, on the
other hand, is executed on different Linux PCs, depending on the experiment, locally at
Lancaster or remotely in Ulm or Ipswich.

Netscape’s Communicator is used to provide a user interface for stream setup and control
during the experiments. The Web browser is executed on the local test machine. The
WebAudio client is controlled through the HTTP interface (see section 4.1.4.1). The client
in contrast uses the RTSP control interface to initiate and teardown the streams.

Measurements and Evaluation

The WebAudio client and server are configured such that they log the transmission traces
during the experiments to their local file system. Whereas the WebAudio client records
the inter-arrival time of every received RTP packet, the server records the QoS feedback
information provided by the periodic RTCP receiver reports (see section 4.1.4.3). The
feedback encompasses the transmission delay of the last packet received, the smoothed
jitter3, the total number of lost packets, and the fraction of packet loss within the report
period.

3The smoothed jitter is calculated according to equation 4.2.

5.1. QOS ANALYSIS IN VARIOUS NETWORK ENVIRONMENTS 147

Server

Web Web

Audio

Client

RTSP (SETUP, PLAY, TEARDOWN)

R T C P (QoS Feedback)

R T P (Audio Stream)

Local Host Remote Host
Local Host

HTTP

(PLAY, STOP)

Audio

Figure 5.1: The General Experimental Setup

The duration of each experiment is set to be approximately 20 minutes which is equivalent
to sending about 60000 audio packets when the PPT (Packet Playout Time) is set to 20
ms. This provides a sound basis for the network QoS comparison between the various
experiments. Since transient network irregularities, such as temporary congestion, usually
remain for only a couple minutes [MKT98], the suggested experiment duration should
prevent the measurements from being fuzzy.

Based on the QoS measurements recorded by the WebAudio client and server for the differ-
ent experiments, a number of graphs presenting the network QoS with respect to the QoS
parameters: jitter, packet loss and packet inter-arrival time, are generated. These graphs,
presented within the next sections, provide the basis for the comparison and evaluation.

5.1.1 IPv4 Networks

Since the experiments with remote sites in Ipswich and Ulm take place in the public
Internet, the measurements depend highly on the time when they are carried out. It is
known that the network QoS characteristics of the Internet vary strongly depending on the
day and the time of day. As a result, each experiment was performed twice: the first time
on a Sunday at around 10 pm, this will be referred to as off-peak time; the second time
on a Monday at around 2 pm, this is called peak time. Extreme differences in the network
QoS are expected between the peak and off peak time experiments since the network load
varies highly at these times.

148 CHAPTER 5. EXPERIMENTS

Figures 5.2 and 5.3 present the inter-arrival times of the packets transmitted along the
different routes from Lancaster to Ipswich and Ulm. During peak time the inter-arrival
times vary significantly more than during off peak time. The graphs also illustrate the
differences in the destination locations. Whereas the route to Ulm has approximately 17
hops and average round-trip delays of the order of 50 ms, the route to Ipswich has only 11
hops and round-trip delays of the order of 20 ms. According to the discussion in section
1.2.6, more intermediate network hops on a transmission path increase the likelihood of
packet clustering which in turn has a negative impact on delay variation. The observations
of these experiments affirm this hypothesis. The variation of the inter-arrival time of the
packets to Ulm are significantly higher than those to Ipswich.

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000 30000

Pa
ck

et
 I

nt
er

-A
rr

iv
al

 T
im

e

Sequence Number

Lancaster <--IPv4--> BT Labs (Monday, 14:00)
Lancaster <--IPv4--> BT Labs (Sunday, 22:00)

Figure 5.2: Packet Inter-Arrival Times
from Lancaster to Ipswich

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000 30000

Pa
ck

et
 I

nt
er

-A
rr

iv
al

 T
im

e

Sequence Number

Lancaster <--IPv4--> Ulm (Monday, 14:00)
Lancaster <--IPv4--> Ulm (Sunday, 22:00)

Figure 5.3: Packet Inter-Arrival Times
from Lancaster to Ulm

Figures 5.4 and 5.5 illustrate the smoothed jitter experienced by the audio packets along
the transmission paths to Ipswich (red) and Ulm (green). These graphs again confirm the
observations above.

20000

20500

21000

21500

22000

22500

23000

23500

0 10000 20000 30000 40000 50000 60000

Ji
tte

r

Sequence Number

Lancaster <--IPv4--> BT Labs (Sunday, 22:00)
Lancaster <--6Bone--> BT Labs (Sunday, 22:00)
Lancaster <--IPv4--> Ulm (Sunday, 22:00)

Figure 5.4: Off Peak Times Delay Jitter

20000

20500

21000

21500

22000

22500

23000

23500

0 10000 20000 30000 40000 50000 60000

Ji
tte

r

Sequence Number

Lancaster <--IPv4--> BT Labs (Monday, 14:00)
Lancaster <--6Bone--> BT Labs (Monday, 14:00)
Lancaster <--IPv4--> Ulm (Monday, 14:00)

Figure 5.5: Peak Times Delay Jitter

The graphs also show the impact of the network load on the jitter. The average jitter
experienced by the packets is substantially higher during peak time. High network load

5.1. QOS ANALYSIS IN VARIOUS NETWORK ENVIRONMENTS 149

causes temporary congestion and leads to high dynamics in router queues what results in
high delay variations.

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000 60000

Pa
ck

et
 L

os
s

Sequence Number

Lancaster <--IPv4--> BT Labs (Sunday, 22:00)
Lancaster <--6Bone--> BT Labs (Sunday, 22:00)
Lancaster <--IPv4--> Ulm (Sunday, 22:00)

Figure 5.6: Off Peak Packet Loss

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000 60000

Pa
ck

et
 L

os
s

Sequence Number

Lancaster <--IPv4--> BT Labs (Monday, 14:00)
Lancaster <--6Bone--> BT Labs (Monday, 14:00)
Lancaster <--IPv4--> Ulm (Monday, 14:00)

Figure 5.7: Peak Packet Loss

Figure 5.6 and 5.7 show the progressions of the total packet loss experienced by the audio
streams on the different paths. Again, the difference in the number of hops on the trans-
mission paths is reflected in the graphs. More intermediate network hops in the delivery
path increase the likelihood of packet loss. The stream to Ipswich (red) experienced, as a
result, less packet loss than the stream to Ulm (green). However, the times of the experi-
ments make a significant difference. If the network is highly loaded, as in peak times, the
probability of loss is much higher due to frequent congestion in the network. The packet
loss trace of the experiment with the remote site at Ulm even shows remarkable loss bursts.
Under these circumstances, the number of network hops has a strong impact on the packet
loss rate since the likelihood for congestion in any intermediate node increases with every
hop.

5.1.2 6Bone Networks

The network configuration for the 6Bone experiment between Lancaster University and BT
Labs (Ipswich) is presented in Figure 5.8. It illustrates how the virtual IPv6 link between
Lancaster and Ipswich is achieved. The 6Bone routers cisco and btlabs-r tunnel the
IPv6 packets through the IPv4 network between these sites. As a result, an IPv6 route
trace from spock to vodclient shows only 3 hops even though the physical network path
from Lancaster to Ipswich is the same as in the case of IPv4.

traceroute6 to 3ffe:2c00::60:9777:71ea (3ffe:2c00::60:9777:71ea) from

3ffe:2101:0:800:260:8ff:fe66:39e1 (3ffe:2101:0:800:260:8ff:fe66:39e1),

30 hops max, outgoing MTU = 1480

1 cisco (3ffe:2101:0:800::1) 7 ms * 4 ms

2 btlabs-r (3ffe:2101:0:ffff::2) 42 ms * 42 ms

3 3ffe:2c00::60:9777:71ea (3ffe:2c00::60:9777:71ea) 44 ms 41 ms 40 ms

150 CHAPTER 5. EXPERIMENTS

Lancaster IPv6 Tesbed BT Labs IPv6 NetworkPublic IPv4 Internet

3ffe:2101:0:800::6
3ffe:2101:0:ffff::2

3ffe:2c00::60:9777:71ea3ffe:2101:0:800::1

spock

WebAudio

vodclient

WebAudio
Server

cisco

Router
6Bone

Client

Router

btlabs-r
6Bone

IPv6 in IPv4 Tunnel

Figure 5.8: The 6Bone Link between the Lancaster IPv6 Testbed and BT Labs

Although most results of the 6Bone experiments were already presented in comparison
with the experiments on IPv4 (see Figures 5.6, 5.7, 5.4 and 5.5), they are discussed here.

The network QoS received by the audio packets in the virtual 6Bone connection from
Lancaster to Ipswich is closely related to the QoS experienced by the packets on the IPv4
connection. Even though the smoothed jitter and the packet loss are slightly higher in the
6Bone experiment, the traces have similar progressions. The explanation for this incident
is simple. The fact that the audio streams are both delivered along the same physical
network links account for the similarity of the network QoS measurements. Since the
IPv4 tunneling of IPv6 packets requires extra processing within the 6Bone routers, the
experienced network QoS is slightly worse.

0

0.2

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000 60000

Pa
ck

et
 I

nt
er

-A
rr

iv
al

 T
im

e

Sequence Number

Lancaster <--IPv4--> BT Labs (Sunday, 22:00)

Figure 5.9: Packet Inter-Arrival Times be-
tween Lancaster and Ipswich on IPv4

0

0.2

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000 60000

Pa
ck

et
 I

nt
er

-A
rr

iv
al

 T
im

e

Sequence Number

Lancaster <--6Bone--> BT Labs (Sunday, 22:00)

Figure 5.10: Packet Inter-Arrival Times
between Lancaster and Ipswich in the
6Bone

5.1. QOS ANALYSIS IN VARIOUS NETWORK ENVIRONMENTS 151

The analysis of the packet inter-arrival times lead us to an interesting observation re-
garding the network QoS within the 6Bone. Figures 5.9 and 5.10 illustrate the packet
inter-arrival times recorded during off peak experiments between Lancaster and Ipswich
on IPv4 networks and the 6Bone. The results of the IPv4 experiments during off peak
time meet our expectations, whereas the results of the 6Bone experiment look odd at first
glance. In periodic intervals (after approximately 3000 packets) the inter-arrival time of
a few packets (approximately 245 packets) increases drastically. A reasonable explanation
for this behavior is that the delay peaks are a result of periodic processing within the 6Bone
edge routers. The peak interval is about 60 seconds. Since IPv4 tunneling is processed in
software within 6Bone routers, it is reasonable to assume that the peak delays are a result
of processing overload due to periodic router maintenance.

5.1.3 IPv6 Networks

The experiment was then repeated for native IPv6.

Figure 5.11 presents the network configuration of the IPv6 and RSVP testbed at Lancaster
University. The core machine, shown in the center, is a Telebit TBC 2000 router. This is, to
our knowledge, the first router to have built-in support for RSVP classification based on the
IPv6 flow label. Standard PCs running FreeBSD 2.2.5 serve as the end systems. They are
equipped with an extended version of the RSVP software release (rel.42a3) from ISI [ISI98].
In order to make use of the IPv6 flow label within RSVP, the RSVP daemon implementation
had to be extended. The required modifications are documented in [SDRS98].

The WebAudio server was operating on the machine named spock; the client host was the
machine called rsvp2b (see Figure 5.11).

The graphs of the network QoS measurements within the testbed are not included here.
Since the network load in the testbed is nearly zero, and only one router separates the
server from the client, the network QoS is expected to be fairly constant and very good.
Nevertheless, the presentation of the packet inter-arrival times on a completely unloaded
network (see Figure 5.12) gives insight into the jitter caused by process scheduling ir-
regularities in the end stations and a single network router. Further experiments with a
pre-loaded network is discussed in section 5.3.

5.1.4 Summary

The experiments presented in this section show that WebAudio operates within different
network environments. They also show that the implementation of RTP and, in particular
RTCP, within WebAudio enables the application to estimate the network QoS character-
istics during streaming sessions. The WebAudio server could easily adapt its operation
based on the QoS feedback information by, for example, increasing redundancy or chang-
ing audio coding. Although adaptive mechanisms are currently implemented only within

152 CHAPTER 5. EXPERIMENTS

Figure 5.11: The IPv6 and RSVP Testbed at Lancaster University

0

0.2

0.4

0.6

0.8

1

1.2

10000 20000 30000 40000 50000 60000

Pa
ck

et
 I

nt
er

-A
rr

iv
al

 T
im

e

Sequence Number

Lancaster <--IPv6--> Lancaster

Figure 5.12: Packet Inter-Arrival Times in the local Testbed

the WebAudio client as, for example, the adaptive receiver buffering, server-site adaptation
mechanisms are planned in future releases of WebAudio.

5.2. RESOURCE RESERVATION 153

Summarizing the results of the network QoS measurements of this section, one can con-
clude:

• During off peak times, when the Internet is not particularly loaded, relatively
good network QoS can be achieved (smoothed jitter is often zero; packet loss rate
is approximately 0.1%).

• During peak times high network load decreases the QoS characteristics of the
network significantly (smoothed jitter is mostly non zero; packet loss rate is about
0.4%).

• “Long-distance” Internet communication is not always an indication for bad net-
work QoS. If good connectivity is provided, as in the case of Lancaster and Ulm,
in most cases the network QoS during off peak is suitable for real-time audio
streaming. However, during peak times, the QoS degradation within the network
is much worse compared to “short-distance” Internet communication.

• Real-time streams in the 6Bone experience odd behavior due to processing bot-
tlenecks in 6Bone routers which process the IPv4 tunneling.

5.2 Resource Reservation

The support for resource reservation within WebAudio can be demonstrated by means of
different experiments.

The first approach suggests the comparison of the audio streaming performances on a
highly loaded network with and without resource reservations.

The plan for such an experiment in the RSVP testbed (see Figure 5.11) was as follows:
as in the experiments presented in the last section, the WebAudio applications record
the received network QoS while streaming the audio data from the server (spock) to
the client (rsvp1b). In order to show the effects of resource reservation, the network is
overloaded with simple best-effort traffic. This is accomplished by flooding the network4

from the source rsvp2b towards the destination rsvp1a. As a result, the Telebit router
interface rsvp1 will be congested since the throughput of the audio stream originating
from the WebAudio server spock and the throughput of the flooding application exceeds
the maximal link bandwidth of the rsvp1 interface. This network configuration allows
applications to be evaluated with varying degrees of resource reservation and network load.

4Flooding the network simply means to send as many packets as possible towards a certain destina-
tion on the network. A simple network application, called throughput, which estimates the maximum
throughput between two end nodes, is used.

154 CHAPTER 5. EXPERIMENTS

WebAudio sessions which reserved the required resources before streaming the data are not
expected to be affected by the best-effort traffic of the flooding application. WebAudio
sessions without resource reservation, however, should perform badly due to the network
congestion.

When the experiment was carried out, WebAudio sessions with and without resource reser-
vation have experienced the same QoS characteristics. The first thought was that the
reservation establishment failed. Therefore, the proper operation of RSVP was verified
by checking the debug files of the RSVP daemon and exploiting the router facility to dis-
play established reservations. However, the check validated the proper installation of the
resource reservation. After consolidating the router manufacturer, it was clear why the
experiments did not achieve the expected results. The disappointing response from the
manufacturer was that the QoS scheduling for IntServ is not yet supported.

The second approach to demonstrate the resource reservation support of WebAudio is sim-
ply to show the application log traces of the reservation establishment and the reservation
state within the router.

Since the reservation protocol operates equally for IPv4 and IPv6, only the latter case is
shown here. In particular the setup of a resource reservation based on IPv6 RSVP with
flow label support, is presented. The experiment also demonstrates the RSVP extension
for flow label support which was developed in the context of this work.

The experiment can be described as follows. The WebAudio server on spock sets up an
audio session with the client on rsvp2b. Before the audio channel is used to carry data,
the necessary resources are reserved.

The first debug trace was recorded at the WebAudio server:

[...]

CMD [26/11 01:30:00] setting random flowlabel: 0xC59D3 (1)

RSVP [26/11 01:30:00] local host info: 3ffe:2101:0:980::3 (2)

RSVP [26/11 01:30:00] rsvp instance initialization successful (3)

RSVP [26/11 01:30:00] dest host info: 3ffe:2101:0:900::3 (4)

RSVP [26/11 01:30:00] rapi_session: sessionId 1, fd 6 (5)

RSVP [26/11 01:30:00] filterspec: rsvp2b.cs-ipv6.lancs.ac.<fl>809427 (6)

RSVP [26/11 01:30:00] tspec: [T [160K(160K) p=320K m=3.2K M=6.4K]] (7)

[...]

The application first registers the new session with the local RSVP daemon (line 5). The
flow specification TSpec and the filter specification FilterSpec (see section 2.3.1.3) to be
used within the PATH messages is passed to the RSVP daemon (line 6 and 7). The flow
label, randomly chosen by the WebAudio server and used to label the packets of the audio
stream, is passed within the FilterSpec to the daemon.

The second debug trace was recorded at the WebAudio client:

5.2. RESOURCE RESERVATION 155

[...]

RSVP [26/11 01:30:00] local host info: 3ffe:2101:0:900::3 (1)

RSVP [26/11 01:30:00] rsvp instance initialization successful (2)

RSVP [26/11 01:30:00] rapi_session: sessionId 1, fd 6 (3)

[...]

RSVP [26/11 01:30:01] RapiAsyncUpcall event: RAPI_PATH_EVENT (4)

RSVP [26/11 01:30:01] filterCount: 1, flowCount: 1 (5)

RSVP [26/11 01:30:01] filterspec: 3ffe:2101:0:980::3<fl>809427 (6)

RSVP [26/11 01:30:01] flowspec: [T [160K(160K) p=320K m=3.2K M=6.4K]] (7)

RSVP [26/11 01:30:01] current bandwidth: 0.000000 is set to 0.0 (8)

RSVP [26/11 01:30:01] current slack term (us): 3588448 is set to 0 (9)

RSVP [26/11 01:30:01] RapiAsyncUpcall event: RAPI_RESV_CONFIRM (10)

[...]

The client application also registers the new session with the local RSVP daemon (line 3).
Line 4 shows the up-call of the RSVP daemon upon receipt of the first PATH message.
The client then transforms the received TSpec and FilterSpec into the FlowSpec and
FilterSpec for the RESV message. These information are passed to the local RSVP
daemon when the reservation is setup. The RSVP daemon then sends the periodic RESV
messages along the reverse path to the sender. Finally after successful establishment of the
reservation, the confirmation is received. Line 10 shows the up-call of the RSVP daemon
upon receipt of the RESV CONFIRM message.

Although the receipt of the RESV CONFIRM message indicates the successful establish-
ment of the reservation, the reservation state of the Telebit router after the establishment
process is also shown. The internal state information of the router validate the proper
establishment of the reservation:

> show rsvp reservation

session filter spec flow spec

destination address port source address port avg peak

--

3ffe:2101:0:900::3 8888 3ffe:2101:0:980::3 809427 160K 320K

>

The reservation filter spec contains the flow label of the audio stream rather than the
transport port of the source.

Conclusion:
This experiment shows the accurate operation of the resource reservation support within
WebAudio although the effects of the reservations regarding the network QoS could not
be demonstrated.

156 CHAPTER 5. EXPERIMENTS

5.3 Performance Analysis of Packet Classification

The introduction of the IPv6 flow label in the Internet Protocol header is intended to enable
classification of packets according to their destination and service. Reservation protocols,
such as RSVP, can make use of this stream identifier to reserve resources for particular
streams in the routers along the transport path. This section explores whether there is an
efficiency gain due to the use of low level flow labels. A theoretical performance estimate of
the different packet classification approaches, namely IPv4, IPv6 and IPv6 with flow label
support is presented. These results are validated through measurements from a series of
experiments that have been carried out with the WebAudio applications in the context of
this thesis.

5.3.1 The Benefits of the Flow Label

According to the IPv6 specification[DH95], the flow label field is intended to label pack-
ets that must be classified within intermediate network nodes in order to provide special
services, such as non-default QoS or real-time services.

The flow label properties are ideal for proper and efficient packet classification. Three
significant characteristics are introduced here. First, the flow label identifies packets
requiring special treatment. A flow label of zero indicates that a particular packet does
not belong to a flow. This allows routers to immediately identify (a simple check within
the IPv6 header is sufficient) whether a packet needs special handling or not.5 Second, the
flow label in conjunction with the source IP address serves as a unique identifier for flows.
This is true because each source node must ensure unique local flow labels according to the
IPv6 specification. The great benefit for packet classification is that all the information
needed to uniquely classify packets is available within the IPv6 header – where it should be.
Third, the flow label is chosen (pseudo-)randomly from the uniform space 1h-FFFFFh6.
The advantage of this attribute is that any set of bits within the flow label field is suitable
for use as a lookup-key by routers.

5.3.1.1 The Layer Violation Problem

IPv4 has no implicit support for flows7. Thus, intervening routers rely on transport pro-
tocol or application level information to identify different flows with the same source. The
fact that a router which is supposed to process data only at the network layer, according
to the OSI reference model, requires information from the transport or application proto-
col (i.e. socket ports) to map packets on to their reserved resources, introduces what is

5This benefit can only be fully exploited if the flow label is consistently used within RSVP for IPv6.
6According to[DH98], the IPng working group agreed to reduce the flow label size to 20 bits.
7IPv4 has no equivalent header field to the IPv6 flow label.

5.3. PERFORMANCE ANALYSIS OF PACKET CLASSIFICATION 157

known as the Layer Violation Problem [SDRS98]. Layer violation has serious drawbacks
with respect to the performance of packet classification. Accessing higher layer protocol
information to distinguish different flows of the same host pair is an expensive operation,
especially in IPv6 networks (see section 5.3.2). Another disadvantage caused by this depen-
dency on transport or application protocol information is that IP-level security techniques,
such as IPSEC [Atk95c], cannot be used in conjunction with RSVP. These mechanisms
generally encrypt the entire transport header hiding the port numbers of data packets from
intermediate routers. In order to overcome this limitation, a “work around” solution has
been specified[BO97].

The most important advantage arising from flow label utilization is that it resolves the
implicit Layer Violation Problem of packet classification. In current RSVP releases packet
classification still depends on the transport protocol ports. Section 5.3.2 shows the per-
formance degradation caused by layer violation. Since packets must be classified on a
per-packet basis in every intermediate router along a transmission path the performance
decrease is significant.

In addition, utilizing the flow label for packet classification has the following advantages:

• Use of the flow label decreases the average processing load of the network routers,
and therefore, reduces the end-to-end delays of audio streams: first, when the flow
label is consistently used to indicate real-time flows, routers need to perform packet
classification only for packets with non-zero flow labels; and second, the processing
time of the IPv6 header, especially the extension headers, is greatly reduced due to
the fact that all packets from the same flow must have identical extension headers.
As a result, routers along a path have to process the headers only on a per flow basis
rather than a per packet basis.

• Flow label usage facilitates end-to-end IP-level security mechanisms within resource
reservation. As long as packet classification does not rely on higher level information
(i.e. ports), IPSEC mechanisms, specifically encryption, cannot obscure important
information. This is advantageous for most audio applications since privacy is often
an important requirement.

• Reserving resources by means of the flow label has provision to reduce problems
caused by frequent route changes such as route fluttering[Pax96b]. The flow semantics
of IPv6 could be exploited to support route pinning mechanisms for reserved flows.

• The flow label has potential to facilitate implementation of QoS based flow routing
mechanisms. Ongoing research in the area of label switching suggests approaches
which make use of the flow label to identify a packet’s reservation state and path
[D+98a].

158 CHAPTER 5. EXPERIMENTS

5.3.2 Theoretical Performance Estimate

This section presents a theoretical performance estimate of the classification process as
deployed within RSVP. Since no early work could be found which had analyzed the perfor-
mance of packet classification for RSVP over IPv4, IPv6 and IPv6 with flow label support,
a simplified model of the packet classifier process is defined. Based on this simplified
model, a complexity comparison between the different packet classification approaches is
presented. The model assumes a software processing architecture. Therefore, the results
presented in this section hold only for software based packet classification. The process-
ing cost of the different operations might change drastically when performed in hardware.
Nevertheless, this analysis gives at least an insight into the complexity of the operations
which might be reflected in the production costs of such hardware support.

5.3.2.1 The Model: A Simplified Packet Classifier

A Packet Classifier with a network router can be modeled by a process that determines a
packet’s flow based on the source and/or destination address, and the flow label or some
higher level information such as the transport ports. A lookup in the flow state table
determines the QoS class of the packet.

Classifier
Packet

IP

IP IP

Flow States

Service
Queues

IP

IP

IP

IP

Figure 5.13: The Simple Packet Classification Machine

The model — a Simple Packet Classifier Machine (see figure 5.13) — is defined according
to the RSVP specification [B+97b] and the extension draft for flow label usage [SDRS98].

5.3. PERFORMANCE ANALYSIS OF PACKET CLASSIFICATION 159

In general, packet classification within RSVP capable routers is achieved by identifying a
packet’s session8 and applying the filters9 of the corresponding session.

In the case of standard RSVP (without flow label support), packet classification requires
the following steps. First, the classifier must determine whether the packet belongs to a
session. Packets that belong to an RSVP session can be identified by (1) looking up the
destination IP address in the session table followed by a comparison of the protocol ID
and transport port. To minimize the processing cost of the address based table lookup,
sophisticated algorithms such as Hashing10 or Patricia Trees11 can be used. A packet that
matches a session’s destination IP address and transport port most likely belongs to the
session although the protocol ID has not been compared at this stage. Also, currently
deployed RSVP applications use generally UDP as transport protocol. Thus, it seems that
packet classification performs better by (2) comparing a packet’s transport port against
the session table entry before (3) verifying the protocol ID. In a second step, the packet
classifier must apply the session filters and determine if a packet is matched. Therefore,
(4) the packet’s source IP address must be compared with the filter address followed by
(5) the transport port comparison.

Packet classification within IPv6 RSVP with flow label support can be processed in a much
more efficient manner due to unique and random distribution of flow label values used in
the IPv6 header. The flow label can be used as a key for (1) a lookup in the flow state
table. Although it is fairly unlikely that different flows would have the same flow label12,
the flow’s source IP address is used to resolve such collisions. Thus, (2) a comparison of
the source IP address with the address is also necessary.

Based on the classification mechanisms described here, the following operations are defined
on the Simple Packet Classification Machine (see Table 5.1).

The different structure of IPv4/IPv6 headers and transport protocol headers requests spe-
cial operations (for example, GetTransHdr) to access the classification information. Row
3 presents an optimistic case where all operations have the same relative processing cost.
Row 4 shows more realistic relative costs which are estimated based on a computational
analysis. For example, IPv6 address operations (i.e. LookUpAddr, CompAddr) are more
expensive than in the case of IPv4 due to the different address size.

Based on the different classification approaches, as described above, and the operations
supported by the Simple Packet Classification Machine, the per Packet Processing Cost
(PPC) of either approach can be computed as follows:

8A session is identified by the IP address, protocol ID and transport port of the destination[B+97b].
9Filters, defined by filter specs, identify the source, namely the source IP address and the transport

port or flow label[B+97b].
10A hash key needs to be generated from the IP address; very fast lookup (only one memory access

required).
11Not very efficient in software due to frequent memory accesses[D+97].
12The probability of a key collision with 14 bit key size is 1

214 = 1
16384 .

160 CHAPTER 5. EXPERIMENTS

Relative Processing Cost
Operation Description

optimistic expected

LookUpAddrV4 Flow state look up based on the 1 2
IP address (i.e. hash lookup,
Patricia Tree traversal)

LookUpAddrV6 See LookUpIPv4Addr; except for IPv6 1 5
LookUpFL Flow state look up based on the 1 1

IPv6 flow label
GetTransHdrV4 Find the begin of the transport 1 1

protocol header in a IPv4 packet
(not constant due to variable length
Option Field)

GetTransHdrV6 See GetTransHdrV4; except for IPv6 1 2
packets (more expensive if multiple
extension headers present

CompAddrV4 Compare a pair of IPv4 source/ 1 1
destination addresses

CompAddrV6 See CompAddrV4; except for IPv6 1 4
CompPort Compare transport protocol port 1 1
CompProtId Compare transport protocol ID 1 1

Table 5.1: Operations of the Simple Packet Classification Machine

PPCRSV Pv4 = C(LookUpV 4) + Pdestaddr × {C(GetTransHdrV 4) + µ ×
C(CompPort) + Psess × [C(CompProtId) + C(CompAddrV 4) +

Pfilt × (ν × C(CompPort))]} (5.1)

PPCRSV Pv6 = C(LookUpV 6) + Pdestaddr × {C(GetTransHdrV 6) + µ ×
C(CompPort) + Psess × [C(CompProtId) + C(CompAddrV 6) +

Pfilt × (ν × C(CompPort))]} (5.2)

PPCRSV Pv6FL = C(LookUpFL) + Pflow × {σ × C(CompAddrV 6)} (5.3)

The Cost function C(x) determines the processing cost of operation x. Table 5.1 (row 3
& 4) specifies the relative processing cost of each operation when performed on the Simple
Packet Classification Machine.

The PPC functions are based on the implicit assumption that packets belonging to a flow
use the same protocol ID (for example, UDP). Therefore, if a packet’s destination IP

5.3. PERFORMANCE ANALYSIS OF PACKET CLASSIFICATION 161

address and port matches a session, the packet belongs to the corresponding session. This
simplification does not restrict universality. Also, to simplify flow label based classification,
it is assumed that all 20 bits of the flow label are used as lookup-key.

In the first analysis (see row 3 of Table 5.1), the symbolic cost C(x) = 1 is used for
all operations. The results of this analysis represent an optimistic case. Only the steps
absolutely necessary for packet classification are considered. In the second analysis (see
row 4), more realistic relative processing costs for each machine operation are assigned.

Only a certain percentage of the packets passing an Internet router belong to a flow,
and hence, complete classification processing must be performed. In order to take this into
account, different probabilities are assigned for packets belonging to a session (Psess), being
matched by a session’s filter (Pfilt) and having the same destination IP address as another
registered session (Pdestaddr). The conditional probabilities Psess and Pfilt are defined as
follows:

Psess = (Prob(packet belongs to a session) | Pdestaddr) (5.4)

Pfilt = (Prob(packet is machted by any filter) | Psess) (5.5)

In the case of flow label based classification, Pflow is used as the probability for a packet
belonging to a flow. The relationship between Pflow and the probabilities in the other
approach is described here:

Pflow = Pdest × Psess × Pfilt (5.6)

The factors µ, ν, and σ take into account that certain operations might have to be per-
formed multiple times in order to resolve ambiguities. The factor µ determines how often
a destination transport port comparison must be performed on average. Assuming that on
average 1.5 RSVP sessions are active between a given host pair where an RSVP session is
active, µ equates to 1.25. The factor ν indicates how often, on average, a source transport
port comparison must be performed. The result is 1.5 if one assumes that on average two
flows are active between the communicating hosts. Factor σ specifies how often the IPv6
address must be compared on average due to lookup collisions caused by identical flow
labels being chosen by different hosts. Since this is fairly unlikely, as discussed above, the
value is in a first analysis set to 1.01.

Figure 5.14 and 5.15 present the graphs of the PPC for either analysis, namely the op-
timistic and the likely realistic case, by varying the probability Pdestaddr that a packet’s
destination IP address matches any session IP address.

Analysis 1 clearly shows the great advantage of deploying the flow label within RSVP over
IPv6. The PPC increases much slower due to the fractional dependency between Pflow and

162 CHAPTER 5. EXPERIMENTS

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

T
he

or
et

ic
al

 P
ro

ce
ss

in
g

C
os

t

Probability P[destaddr]

IPv4/IPv6 RSVP without FL support
IPv6 RSVP with FL support

Figure 5.14: Analysis 1 – Optimistic-case
PPC for variable Pdestaddr (all classifier op-
erations have a symbolic cost of 1)

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

T
he

or
et

ic
al

 P
ro

ce
ss

in
g

C
os

t

Probability P[destaddr]

IPv4 RSVP without FL support
IPv6 RSVP without FL support
IPv6 RSVP with FL support

Figure 5.15: Analysis 2 – PPC for likely
realistic relative operation costs (row 4 of
Table 5.1)

Pdestaddr as shown in (6) and especially due to the simpler processing. Even in the optimistic
case, where all operations have a minimal cost of 1, the flow label based approach performs
much better. The explanation is simple. First, the flow label, used as lookup-key, enables
a quick check as to whether the packet belongs to a flow or not. Additional classification
processing cost is incurred only if a packet belongs to a flow, whereas for standard RSVP
processing, it is already costly to find out if a packet has to be classified or not. Second,
besides the flow table lookup, only the source IP address needs to be compared in order
to identify the proper flow, whereas for standard RSVP classification, the protocol ID
comparison as well as the layer violating transport port validation are required. Analysis
2 (Figure 5.15) presents a more likely and realistic progression of the PPC function due to
the adjustment of the operation costs (see row 4 in Table 5.1).

In order to examine how stable our model is, an additional analysis is presented. Figure
5.16 shows the progression of the PPC functions for other values of µ, ν, and σ. Here, it
is assumed that on average 3 RSVP sessions are active (⇒ Psess = 0.33) and 5 flows are in
use (⇒ Pfilt = 0.2). Therefore, the value of µ results to 1 + 2

3
(1 + 1

3
× 1) = 1.89, whereas

ν results to 1 + 4
5
(1 + 3

5
(1 + 2

5
(1 + 1

5
× 1))) = 2.51. It is also assumed that the probability

for a flow label collision is 10%. Thus, σ results to 1.10. The graph clearly shows that the
change of the average number of sessions and flows between a given RSVP host pair and
the modification of the flow label collision probability does not change the former results
of the PPC much. This suggests that the results are fairly stable.

Figure 5.17 aims to illustrate the impact of flow label collisions on the classification per-
formance. A 3-D graph is shown where the X axis determines the Pdestaddr, the Y axis
determines the maximum number of flows with an equal flow label (Ψ), and the Z axis
represents the PPC. Since the expected number of source IP address comparisons σ and
the probability that a packet belongs to a flow Pflow is closely related, the formula 5.3 is
enhanced to:

5.3. PERFORMANCE ANALYSIS OF PACKET CLASSIFICATION 163

PPCRSV Pv6FL = C(LookUpFL) + Pflow × {(Pflow × Ψ) × C(CompAddrV 6)} (5.7)

The graph shows that even with a relatively high number of average flow label collisions
(Pflow × Ψ) − 1, the flow label based classification approach excels standard RSVP classi-
fication.

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

T
he

or
et

ic
al

 P
ro

ce
ss

in
g

C
os

t

Probability P[destaddr]

IPv4 RSVP without FL support
IPv6 RSVP without FL support
IPv6 RSVP with FL support

Figure 5.16: Analysis 3 – PPC in the likely
realistic case but with 3 sessions, 5 flows
and a flow label collision probability of
10% on average

IPv4 RSVP without FL support
IPv6 RSVP with FL support

0
0.2

0.4
0.6

0.8
1Probability P[destaddr] 1

2
3

4
5

6
7

8

Equal Flow Label

1
2
3
4
5
6
7

Theoretical Processing Cost

Figure 5.17: PPC, computed from
Pdestaddr (X axis) and Ψ (Y axis) accord-
ing to 5.7, shows that flow label collisions
have a minor impact

To summarize this theoretical analysis shows that classification based on the IPv6 flow
label has the potential to outperform standard RSVP based classification for IPv6 by far
(about 3-6 times) and even the IPv4 classification (about 2-4 times) although the latter
should be much simpler due to shorter IP addresses and the simpler Option mechanism.
Furthermore, it has illustrated that the problem of flow label collisions, which should occur
rarely if lookup tables are sufficient in size, has only a minor impact on the classification
performance.

5.3.3 Experiments

This section confirms the results of the theoretical analysis through experiments with
WebAudio in a real network environment.

To show that the processing load of a router is not as strongly affected by the number of
flows when classification is based on the flow label, one can measure either the maximum
number of packets per second (or flows) that can be processed by the router or the pro-
cessing load while transmitting the same number of packets per second for each approach.
The latter measurement technique is chosen within this work since the former approach
might lead to incorrect data as a result of operating the router at its processing limits.

164 CHAPTER 5. EXPERIMENTS

The RSVP testbed used for the experiments is shown in Figure 5.11. The TBC 2000 router
has three interfaces, named rsvp1, rsvp2, and telebit. Each interface has an independent
processor to perform packet classification and scheduling. The processing load of each
individual interface can be determined with the measure command offered by the router’s
operating system. This feature allows measurement of the load on the interfaces caused
by classification of packet audio as required by RSVP. The WebAudio application is used
for audio streaming. Resource reservation for the audio streams is accomplished through
our modified RSVP daemon which supports resource reservation for standard IPv4/IPv6
flows and marks flows with the IPv6 flow label.

Based on this setup, several measurements were made to compare the performance of the
different classification implementations, namely IPv4, IPv6 and IPv6 with flow label sup-
port. Figure 5.18 presents the results of average experiments measuring the per Interface
Processing Load (IPL) of the router while periodically establishing new audio streams and
their RSVP reservations. Each experiment has a duration of about 15 minutes. At the
end of every 30 second period a new audio stream was setup. An additional reservation
taking into account the QoS demands of the new audio stream, is established. The audio
streams, which all transmit the same audio data, require a bandwidth of 200 Kbps. Every
50 ms, an audio frame (1250 bytes) with its RTP header encapsulated in a UDP packet
is sent independently for each flow. The measure command offered by the TBC 2000 is
used to determine the progression of the IPL throughout the experiment. Each time the
measure command is called, it prints the average processing load since the last call for each
interface. As a result, by measuring the load every minute while steadily increasing the
number of flows, the load increase of the interfaces can by closely traced.

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14

Pr
oc

es
si

ng
 C

os
t

Number of Flows

IPv6 RSVP (24 tel->rsvp2 + 30 rsvp1->rsvp2)
IPv4 RSVP (24 tel->rsvp2 + 30 rsvp1->rsvp2)
IPv6 RSVP with FL (24 tel->rsvp2 + 30 rsvp1->rsvp2)

Figure 5.18: Progression of the Interface
Processing Load while increasing the num-
ber of audio flows

0

20

40

60

80

100

120

5 10 15 20 25

Pr
oc

es
si

ng
 C

os
t

Number of Flows

IPv6 RSVP (24 tel->rsvp2 + 30 rsvp1->rsvp2)
IPv4 RSVP (24 tel->rsvp2 + 30 rsvp1->rsvp2)
IPv6 RSVP with FL (24 tel->rsvp2 + 30 rsvp1->rsvp2)
f(x) = 0.1 x^2 + x + 4
g(x) = 1.3 x + 3
h(x) = 1.0 x + 3

Figure 5.19: Extrapolation of the Inter-
face Processing Load progression

The experiments, presented in Figure 5.18, are based on the following setup: rsvp1a
and spock, transmit their audio data to rsvp2b and rspv2a respectively. Therefore,
both hosts send their packets through the router interface rsvp2. As a result, it is ex-
pected that the load on that interface increases heavily due to the required QoS processing,

5.3. PERFORMANCE ANALYSIS OF PACKET CLASSIFICATION 165

namely packet classification and scheduling. Running each experiment for all three classifi-
cation approaches, allows a direct comparison of the load measurements. Note that packet
scheduling is absolutely independent of the packet content and hence, not affected by the
flow label. The results of establishing 1-24 flows between spock and rsvp2a and 1-30
flows between rsvp1a and rsvp2b clearly show the advantage of using the flow label for
packet classification.

These results, namely the flow label based classification performs best, followed by the
standard IPv4 and finally the IPv6 approach, are consistent with the theoretical analysis
presented in section 5.3.2. By extrapolating the graphs (Figure 5.19), one can see the
extent to which the flow label approach performs better. While the standard IPv6 ap-
proach might reach maximum capacity after approximately 28 minutes (56 flows), flow
label based classification can deal with about 3 times this level (168 flows) before reaching
the router’s processing limit. Comparing the load progressions with our theoretical results
shows that the difference between the approaches, and especially between the flow label
based classification and the IPv4 approach, is less than expected.

This first experiment is not very realistic due to the lack of standard best-effort traffic
competing with the traffic of the reserved flows in the router. Therefore, in a second
trial a more realistic experiment is set up by adding a constant best-effort load of 2 Mbps
between both host pairs. Figure 5.20 presents the results of this extended experiment.
Note, the final IPL of the standard IPv6 based classification experiment is already above
65% of the maximum capacity whereas the classification based on the flow label requires
only about 30%. The former requires about 50% of the maximum capacity for the flow
processing whereas the latter consumes only 10%. Figure 5.19 extrapolates the progression
of the processing load of this second trial in order to compare the results with our first
experiment. After 28 minutes (56 flows), in the case of standard IPv6 classification, the
processing capacity would already be overloaded by approximately 20% whereas flow label
based classification loads the router only to approximately 40%.

The results of the second experiment are in accordance with the findings of our theoretical
analysis. The performance ratio of the theoretical classification analysis results to 1:3:5 for
flow label based, IPv4 and IPv6 classification whereas the experiments discover a ratio of
1:1.4:4. The theoretical analysis takes only the processing cost of classification into account.
The results of the experiments, however, represent the performance difference of the overall
IPL which accumulates the load of packet classification and scheduling. Especially in the
case of IPv6 flows, the IPL is higher due to bigger IP headers which must be processed.
Considering this, it is surprising how closely related the results are. From this, one can
conclude that packet classification has a relatively strong impact on the overall IPL within
the TBC 2000. This might also be true for other router brands.

166 CHAPTER 5. EXPERIMENTS

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14

Pr
oc

es
si

ng
 C

os
t

Number of Flows

IPv6 RSVP (plus 4 MBits load to If rsvp2)
IPv4 RSVP (plus 4 MBits load to If rsvp2)
IPv6 RSVP with FL (plus 4 MBits load to If rsvp2)
IPv6 RSVP (no const load)
IPv4 RSVP (no const load)
IPv6 RSVP with FL (no const load)

Figure 5.20: Progression of the Interface
Processing Load while increasing the num-
ber of audio flows with a constant base
load of 4 Mbps on the interface

0

20

40

60

80

100

120

0 5 10 15 20 25

Pr
oc

es
si

ng
 C

os
t

Number of Flows

IPv6 RSVP (plus 4 MBits load to If rsvp2)
IPv4 RSVP (plus 4 MBits load to If rsvp2)
IPv6 RSVP with FL (plus 4 MBits load to If rsvp2)
f(x) = 3.9 x + 12
g(x) = 1.3 x + 15
h(x) = 0.9 x + 15

Figure 5.21: Extrapolation of the Inter-
face Processing Load progression

5.3.4 Summary

Experiments on early commercial IPv6 routers have shown that flow label based packet
classification within resource reservation protocols, such as RSVP, decreases the processing
costs in routers of the order of 3-6 times with respect to standard IPv6 classification
and about 2-4 times with regard to IPv4 classification. The results vary depending on
the available processing architecture. As a result, utilization of the flow label within
resource reservation enables routers to handle significantly more flows before reaching their
processing limit and reduces the end-to-end delay due to simpler and hence, faster packet
processing in each intermediate router along the transmission path.

Conclusion:
The results of the theoretical analysis, presented in section 5.3.2, are confirmed by
the experiments. Both show the same results: flow label based classification performs
significantly better than standard IPv4 classification and greatly outperforms standard
IPv6 classification.

5.4 Summary

The experiments presented throughout this chapter can be divided into three groups:

1. Experiments within different network environments, namely IPv4, IPv6 and the
6Bone.

The results of these experiments can be summarized by stating that:

5.4. SUMMARY 167

• WebAudio operates well within different network environments.

• The QoS feedback mechanisms within WebAudio enables the application to
estimate the network QoS characteristics during streaming sessions.

2. Experiments with the resource reservation protocol RSVP.

The experiments validate the accurate functioning of resource reservation signalling
within WebAudio. The effects of the reservations regarding the network QoS could
not be demonstrated due to lack of support for QoS scheduling in the router.

3. Experiments to verify the performance gain of packet classification based on IPv6
flow labels.

The results can be outlined as follows:

• The flow label-enabled and extended RSVP implementation developed in the
context of this work operates correctly.

• Flow label based packet classification decreases the processing costs in routers
of the order of 2-4 times compared to IPv4 classification, and it outperforms
standard IPv6 classification about 3-6 times.

Chapter 6

Final Remarks

The final chapter of this thesis concludes the work by summarizing the achievements pre-
sented throughout the thesis. The last section of this chapter provides an outlook on
further developments on WebAudio and future research.

6.1 Conclusion

The main achievements of this work can be divided into three parts.

First, the thesis has provided an in-depth discussion on important Internet multimedia
protocols and mechanisms to improve the QoS of real-time audio streaming in the Internet.
The results of this study laid down the foundation for many design choices during the
development of WebAudio.

Second, WebAudio, a state-of-the-art real-time audio streaming application, has been de-
veloped and implemented. This application relies on several important protocols in the
context of Internet multimedia and real-time streaming. Based on the novel application
WebAudio, further investigations regarding the impact of the IPv6 flow label on resource
reservation mechanisms, such as RSVP, were carried out.

Third, the results of a theoretical analysis to quantify the performance gain introduced
by the use of the flow label for packet classification as required within RSVP have been
presented. These results were confirmed by performance measurements within an RSVP
testbed.

The following sections summarize the results of the different areas of investigation along
with their conclusions.

169

170 CHAPTER 6. FINAL REMARKS

6.1.1 Study of Internet Protocols and QoS Mechanism

Interactive real-time audio data communications are time-critical with stringent QoS con-
straints regarding the end-to-end delay, jitter and reliability.

Chapter 2 and 3 provide an extensive discussion on important Internet multimedia proto-
cols and mechanisms to improve the QoS of interactive real-time streaming in the Internet.

While the first part of this section presents the conclusions of the Internet multimedia
protocol study, the second part concludes the analysis of current QoS mechanisms with
respect to interactive media streaming as presented in chapter 3.

Conclusions on Internet Protocol Study

The most important protocols currently used within Internet multimedia applications were
reviewed. The study explores their usability for interactive real-time streaming in the
Internet. The advantages and drawbacks of these protocols were discussed following the
structure of the OSI reference model.

The network layer protocols IPv4 and IPv6 were discussed; the latter was emphasized.
The benefits of the new Internet Protocol regarding real-time media streaming can be
summarized as follows: first, IPv6 extends the protocol by native multicast and security
facilities, second, simplification of the IPv6 protocol header enables faster processing within
intermediate network nodes, and finally, the IPv6 flow label resolves the implicit layer
violation problem of RSVP and improves the performance of packet classification.

The transport protocols and streaming mechanisms discussed were: UDP, TCP and RTP-
on-UDP. Whereas TCP is not suitable for interactive real-time streaming applications
because of the interference of its congestion control and reliability mechanisms with the
requirements of time-critical applications, UDP provides a simple but sufficient service.
Control mechanisms such as packet ordering, for example, need to be implemented on
higher levels. As a result, RTP-on-UDP is recommended for real-time streaming, since it
adds valuable stream information to the packets and provides a feedback mechanism by
means of its control protocol RTCP. RTP, on its own, is misleadingly called a transport
protocol. It is merely a lower-level application support protocol.

The resource reservation protocols RSVP and YESSIR were discussed. RSVP is currently
the resource reservation protocol of choice within the IETF. It is recommended to be used
with real-time streaming applications to negotiate guaranteed or controlled load end-to-
end QoS if the IntServ architecture is supported along the network path. The network
layer reservation protocol has, however, the following drawbacks: first, it is not scalable
within the core of the network where thousands of flows need to be maintained, and
secondly, RSVP is not a reliable reservation protocol because it follows the dynamics of
the underlying routing protocol. The simple and light-weight reservation protocol YESSIR,

6.1. CONCLUSION 171

in contrast, is not a network-level signalling protocol. The signalling is simply based on
top of the application-level protocol RTP (RTCP) and hence can only provide very limited
reservation services.

Regarding application level protocols HTTP and RTSP were discussed and evaluated for
the use of stream control. HTTP as a standard protocol can only provide simple stream
control; the lack of session or stream semantics limits its usability. RTSP, in contrast, is a
sophisticated stream control protocol with similar functionality to a “VCR remote control”.
Whereas RTSP-based stream control requires special RTSP capable clients, HTTP-based
stream control can be achieved with standard Web browsers. Due to the similarity of their
protocol designs, RTSP could be easily extended to provide service for the simple HTTP
control mechanism transparently.

Conclusions on QoS Mechanism Study

An analysis of application level techniques and network level QoS mechanisms that have an
impact on the QoS of interactive real-time media streaming applications were presented.
The results are summarized below.

Application layer mechanisms, namely packet transfer, forward error correction, adap-
tation and receiver buffering were examined regarding their usability and importance for
interactive real-time streaming:

With respect to packet transfer, interactive real-time streaming applications have a choice
of transport mechanisms, packet sizes and packet transmission techniques. RTP-on-UDP
is recommended for the packet transfer. End-to-end delay constraints require interactive
applications to minimize packetization delays by using small packets. A payload of one or
two media frames is suggested. Non-interactive application should maximize the number
of frames per packet in order to minimize the packet overhead. Moreover, interactive real-
time media streaming applications are advised to “shape” their data traffic so that packets
are sent isochronously over time to reduce the likelihood of packet clustering and thus the
packet loss rate.

The use of packet-based forward error correction mechanisms capable of correcting a few
consecutive packet losses is recommended within interactive real-time streaming. Since the
number of consecutive packets lost is usually small (of the order of 1 to 3 packets), these
FEC mechanisms are effective in the Internet.

Adaptation as a general mechanism for adjusting the operation of an application depend-
ing on the QoS provided by the network is very effective for Internet real-time streaming.
Even quite severe service fluctuations can be accommodated by means of adaptive mecha-
nisms. However, adaptation can only cope with QoS degradations of deterministic bounds.
Since resource reservation mechanisms are not supported in most parts of the Internet yet,
application-level adaptation is a necessity for real-time streaming.

172 CHAPTER 6. FINAL REMARKS

Receiver buffering, for example, benefits from adaptive mechanisms. In general, adaptive
(dynamic) receiver buffering is preferable over simple (static) buffering since “optimal”
buffering delay estimation depends highly on the jitter dynamics. If no QoS guarantees
are granted, receiver buffering is mandatory in order to compensate for the jitter. To
compensate for the jitter introduced by process scheduling in the receiver node, the buffers
of the sound device need to be exploited. Again adaptive buffering is preferable since the
buffering delay can be minimized.

Different network layer mechanisms to improve the QoS of real-time streaming appli-
cations or to guarantee QoS for these applications were discussed.

The first group of mechanisms includes various service differentiation mechanisms: relative
priority marking, service marking, and the mechanisms proposed to support DiffServ.

The simple approach of relative priority marking is not very useful for real-time streaming
since relative priorities do not provide suitable differentiation for real-time media streams.
Service marking improves the relative priority marking by increasing the range of possible
service semantics. However, new service types cannot be easily introduced, since the header
field is small and new types would involve changes in every network node.

Differentiated Services is currently the preferred differentiation mechanism discussed within
the IETF. It outperforms the two former differentiation mechanisms by supporting flexible
service classes which are not limited to a pre-defined standard. DiffServ divides the network
into several virtual best-effort networks. The scalable architecture has the potential to
resolve the scalability problem of the IntServ architecture in the core of the network since
no “per-flow” state information is required. However, since DiffServ provides forwarding
behaviors only on a “per-hop” basis, it cannot offer end-to-end service guarantees. The lack
of a reliable admission control mechanism impedes DiffServ from offering reliable resource
promises. Even though DiffServ cannot guarantee end-to-end QoS, when widely deployed
in the Internet, it has the potential to significantly improve the network QoS received by
current real-time streaming applications. QoS sensitive real-time media traffic would then
be protected from (discrete) data traffic.

A different QoS mechanism, called IP label switching, aims at improving current QoS in
the Internet by means of packet switching techniques. IP label switching is more efficient
than regular IP routing due to the simpler decision making process in the network routers
(or switches). This has the potential to reduce the end-to-end delay received by real-
time streams by reducing the processing cost in every intermediate node. However, IP
label switching does not scale well in the core of the network, where IP switches have to
maintain forwarding state for every flow.

The IntServ architecture provides network level QoS by controlling the network delivery
service. Real-time streaming applications can request their QoS demands by means of a re-
source reservation protocol. IntServ supports guaranteed (hard) and controlled load (soft)
QoS guarantees that provide optimal service for QoS sensitive applications. Although
controlled load QoS, which provides service equivalent to unloaded networks, is suitable

6.1. CONCLUSION 173

for real-time streaming applications, these should still implement adaptive mechanisms to
deal with small variations in the QoS. In contrast, guaranteed QoS, which offers hard QoS
guarantees, provides an optimal service for real-time streaming applications even without
adaptation, error correction, and receiver buffering mechanisms. The main drawbacks of
IntServ are: first, IntServ relies on support within all network elements along the trans-
mission path in order to enable end-to-end reservations, and secondly, “per-flow” state is
required in every intermediate network element. This does not scale successfully in large
networks and in particular not within the core of the Internet. Inter-operation between
IntServ and IP label switching is being studied. The state information required in net-
work nodes to perform label switching and resource reservation can be easily maintained
together.

Sometimes, IntServ and DiffServ are considered as competing technologies. A clear trend
towards IntServ or DiffServ, however, cannot be seen yet and might never be seen. Some
researchers believe that IntServ is a “dead” technology due to its scalability problems
in the core of the network. However, new approaches or approaches that integrate the
IntServ and DiffServ architectures are more likely to become the future QoS framework
within the Internet. Integration of DiffServ and IntServ suggests the use of DiffServ as
a scalable, hop-by-hop QoS mechanism in the core of the network, and IntServ in the
stub networks where scalability is not a problem. Using IntServ as “customer” of DiffServ
enables streaming applications to negotiate their QoS requirements within stub networks
and allows admission control for the DiffServ region. In the core, IntServ QoS reservations
must be mapped to appropriate DiffServ service classes. However, since DiffServ provides
only service based on per-hop behaviors, it cannot easily provide real QoS guarantees in
the core. Therefore, extended IntServ solutions that achieve scalability due to aggregation
and overhead reduction might be preferred in the long term.

Final Results

Since the end-to-end QoS constraints are very strict in the case of interactive real-time
audio, QoS degradation has a great impact on the usability (in terms of user satisfaction).
In order to satisfy the QoS requirements of audio streaming applications, it is suggested
that these applications are adaptive to the “best” QoS mechanism available along the
network transmission path. As a result, if IntServ/RSVP is supported, the applications
should first make use of this resource reservation mechanism. Otherwise, they should fall
back and exploit the service differentiation approach of DiffServ. If neither QoS mechanism
is provided by the network, applications have to cope with the simple best-effort service.
Soft QoS guarantees, as offered by the IntServ controlled load service class, are sufficient
for adaptive audio streaming applications. Non-adaptive applications, in contrast, either
require hard QoS guarantees or provide non-optimal service due to over-provisioning.

In addition, current real-time audio streaming applications should be developed considering
the following design recommendations:

174 CHAPTER 6. FINAL REMARKS

• UDP should be used as transport protocol.

• RTP is a useful application level protocol that facilitates media streaming. In
conjunction with its feedback mechanism, RTP and RTCP enable adaptive mech-
anisms based on QoS feedback.

• RTSP is a comprehensive stream control protocol. HTTP is sufficient for simple
stream control. Both protocols can easily co-operate within a multi-protocol
interface.

• Interactive real-time streaming requires small packets (1 or 2 media frames) even
if the packet overhead is big.

• Receiver buffering is mandatory if no hard QoS guarantees are granted. Other-
wise, adaptive receiver buffering is suggested in order to minimize the buffering
delay.

• Adaptation is suggested wherever applicable as a general means to deal with QoS
dynamics in the network or the end systems.

• Packet-based forward error correction, which corrects up to a few consecutive
packet losses, is recommended within Internet streaming.

6.1.2 Real-Time Audio Streaming Application

The real-time streaming application called WebAudio was developed within the context of
this work.

The final conclusions of the Internet protocol analysis and the QoS mechanism study
presented in the last section had an important impact on the design choices and imple-
mentation of WebAudio. The protocols and mechanisms which are considered mandatory
and most of the ones which are recommended are included.

WebAudio, yet another real-time audio streaming application, was developed and imple-
mented from scratch for the following reasons: (1) The lack of streaming applications
using IPv6 would have prevented the study on the impact of the flow label on network
QoS mechanisms such as IntServ/RSVP. (2) The integration, at an early design stage, of
the mechanisms and protocols suggested above led to a more efficient design than their
addition to an existing application. (3) Available applications support either adaptation or
resource reservation, while both mechanisms are suggested for current Internet streaming
applications. (4) The demand for a streaming application that can be used within WWW
applications in concern with the fact that available streaming applications are not easily
or thoroughly Web integrateable suggested a specially designed application.

6.1. CONCLUSION 175

WebAudio, the live audio streaming application, provides audio conferencing services for
multiple users. The client and server application provide an “open” stream control interface
which enables easy Web integration. Resource reservation and adaptation mechanisms are
exploited to improve the QoS of the audio streams.

The operation of WebAudio can by summarized as follows: The user interface, which is
invoked by the Web browser, either as a plug-in or as a helper application, controls the
client application by means of HTTP or RTSP. WebAudio uses RTSP for stream control
between a client and server.

The main contributions achieved with WebAudio are:

• WebAudio is designed in a platform independent manner. Besides the current re-
lease for FreeBSD and Linux, a future version for the Microsoft Windows systems is
planned.

• Support for multiple audio encodings is provided. Although currently only PCM and
GSM codecs are included, the application design has provision to easily integrate
further codecs

• WebAudio operates within IPv4 and IPv6 networks. The network protocol for the
stream data can be chosen during application initialization or even run time.

• Network level QoS according to the IntServ architecture is supported by WebAudio.
The resource reservation protocol RSVP is used to set up and control the reservations.
This enables WebAudio to provide high quality service to end users of IntServ capable
networks.

• The packet streaming mechanism provided by RTP-on-UDP is used for the audio
stream. RTCP enables the client application to adapt its operation to QoS changes
in the network.

• WebAudio uses an adaptive receiver buffering mechanism to compensate for jitter.
An extended algorithm for the estimation of the optimal buffering time, which spe-
cially considers delay spikes in packet transmission and adapts adequately fast to
changes in the network, provides good service.

• The WebAudio client and server are multi-stream capable. Whereas the server trans-
mits the encoded audio data to all the clients on individual point-to-point connec-
tions, the clients mix all received streams prior to playback.

• The multi-protocol control interface enables clients to control the applications by
means of HTTP or RTSP. The HTTP-based control interface facilitates simple con-
trol, whereas the RTSP-based control interface enables the full range of stream con-
trol.

176 CHAPTER 6. FINAL REMARKS

• The “open” control interface has provision for simple and flexible user interface devel-
opment and enables easy Web integration. Even a standard Web browser is sufficient
to control the application.

Although the WebAudio client and server applications are still in an alpha release version,
the experiments in chapter 5 have shown that they operate well within different network
environments and support resource reservation according to RSVP. WebAudio has also
been very useful for experimental purposes. In conjunction with the extended IPv6 RSVP
implementation, it has been used to verify the theoretical results about the performance
gain of IPv6 flow labels (see section 5.3.2) by means of real experiments (see section 5.3.3).

6.1.3 Deployment of Flow Label within RSVP

An important aim of this work was to explore the benefits of IPv6 for network QoS mech-
anisms based on resource reservation. The thesis examines whether there is an efficiency
gain due to the employment of network level flow labels within IntServ/RSVP.

In order to investigate the impact of IPv6 flow labels, the RSVP daemon implementation of
ISI [ISI98] had to be extended. The required extensions and modifications were documented
in an Internet Draft [SDRS98].

Based on the enhanced RSVP implementation and WebAudio, a series of experiments was
performed to measure the performance gain of packet classification when the IPv6 flow
label is used as primary classification criterion. The results of these measurements can be
summarized as follows: Flow label based packet classification decreases the processing costs
in routers of the order of 3-6 times with respect to standard IPv6 classification and about 2-
4 times with respect to IPv4 classification. The results may vary depending on the available
router architecture. As a result, utilization of the flow label within resource reservation
enables routers to handle significantly more flows before reaching their processing limits.
Flow label use within IntServ/RSVP has also the potential to reduce the end-to-end delays
of packets due to simpler, and hence faster, packet processing in each intermediate router
along the transmission path.

Besides the performance gain of packet processing within network nodes, the flow concept of
IPv6 contributes also on an other level. It resolves the implicit Layer Violation Problem of
standard RSVP and enables IP-level security mechanisms without recourse to “clandestine”
techniques.

Finally, from the flow label examination one can conclude that IPv6 has the potential to
improve real-time audio streaming applications due to simpler, and hence substantially
faster, processing in the network routers.

6.2. FUTURE WORK 177

6.2 Future Work

An overview of future plans and development work concludes the work of this thesis. The
first section describes the further developments within the WebAudio application. The
second part discusses future research following from this work.

6.2.1 Further Development

Chapter 4 identifies various areas where future developments within the WebAudio appli-
cations are planned.

Enhancements within WebAudio are aimed primarily at the following directions ordered
according to their importance:

First, a graphical, Web-based user interface for control of the WebAudio client application
will be developed. The HTTP-based “open” control interface allows a simple, but effective,
design based on HTML and Java Script.

Second, WebAudio will be ported to the Microsoft Windows operating systems, namely
Windows 95 and 98. A version for Windows NT may be developed later. This will allow
WebAudio to be a freely available, state-of-the-art real-time audio streaming tool which can
be widely deployed in the Internet. Since the application was carefully designed, keeping
in mind the aim of platform independence, the port to Windows 95 or 98 is expected to
be easy to accomplish.

Third, several new audio codecs will be included in WebAudio in order to cover the full
range from low-bandwidth voice to high-quality sound codecs. Again these changes are
expected to be fairly simple since the Audio class has already provision to support addi-
tional audio encodings. Support for multiple audio formats is especially simple on Windows
systems, since the distribution already contains the most common codecs.

Fourth, support for the DiffServ architecture will be integrated. Since DiffServ is distinct
from IntServ, the main alternative QoS mechanism currently discussed within the IETF,
DiffServ support within WebAudio would enable the application to adaptively select the
“best” QoS mechanism provided in the network. However, it is not yet clear how network
QoS will be achieved within the future Internet.

Fifth, multicast based audio streaming will be considered in future versions of WebAudio.
Since the server is currently limited to send the audio data in form of multiple point-
to-point streams, the number of clients is restricted to small and moderate groups. The
extensions for multicast support are expected to be small, since the current protocols used
within WebAudio are aware of multicast communication.

Sixth, packet-based FEC mechanisms that compensate for a few consecutive packet losses
will be integrated within WebAudio. However, since the suggested FEC mechanism has

178 CHAPTER 6. FINAL REMARKS

an impact on adaptive buffering delay estimation, this change might require further inves-
tigations in these areas.

6.2.2 Further Research

Finally, future experiments and research which could not have been completed within the
framework of this thesis, are noted here.

WebAudio encompasses an enhanced version of the adaptive receiver buffering algorithm
from UMASS [MKT98] which improves the algorithm responsiveness and decreases its
complexity. However, although the arguments for the improvement seem reasonable, it
has not yet been proven on large-scale experiments within Internet real-time streaming.
Performing these experiments is one future topic of research.

WebAudio uses the resource reservation protocol RSVP. With respect to the discussion in
section 2.3.1, RSVP has still significant problems if used in large-scale networks such as
the Internet. The drawbacks addressed within this context are as follows. First, RSVP has
significant protocol overhead and scalability problems within core network routers due to
the periodic, “per-flow” messages. In [MHSC99], it is suggested to replace the “per-flow”
soft-state with a “per-neighbor” soft-state and use hard-state for the flows. RSVP processes
within network routers make sure that their RSVP neighbors operate properly by means of
so-called “heartbeats”. Therefore, when a flow reservation is set up, and the neighbors are
“alive”, the periodic messages for the flow reservations can be renounced. Secondly, RSVP
has very slow reservation establishment times in environments where packet loss is high.
If the initial PATH or RESV message is lost, the message is not re-sent before the refresh
period times out. A fast establishment mechanism is suggested [MSH98, MHSC99] which
re-sends the initial PATH message after a very short timeout period (which backs off) until
it receives the RESV message as confirmation for the successful PATH message. Further
developments and experiments regarding these RSVP extensions are another important
topic of future research.

Bibliography

[AC+93] F. Alvarez-Cuevas et al. Voice synchronization in packet switching networks.
In IEEE Networks Mag 7(5), pages 20–25, 1993.

[Alm92] P. Almquist. Type of Service in the Internet Protocol Suite. In RFC 1349,
July 1992.

[Atk95a] R. Atkinson. IP Authentication Header (AH). In RFC 1826, August 1995.

[Atk95b] R. Atkinson. IP Encapsulation Security Payload (ESP). In RFC 1827, August
1995.

[Atk95c] R. Atkinson. Security Architecture for the Internet Protocol. In RFC 1825,
August 1995.

[B+94] R. Braden et al. Integrated Services in the Internet Architecture: an Overview.
In RFC 1633, June 1994.

[B+97a] M. Borella et al. Analysis of End-to-End Internet Packet Loss: Dependece
and Asymmetry. In Preprint, 1997.

[B+97b] R. Braden et al. Resource ReSerVation Protocol (RSVP) - Ver 1 Functional
Specification. In RFC 2205, 1997.

[B+98] S. Blake et al. An Architecture for Differentiated Services. In IETF Internet
Draft (work in progress), draft-ietf-diffserv-arch-02.txt, October 1998.

[BC95] J.-C. Bolot and H. Crepin. Analysis and Control of Audio Packet Loss over
Packet-Switched Networks. In NOSSDAV, 1995.

[Ber98] Y. Bernet. A Framework for Use of RSVP with Diff-serv Networks. In
IETF Internet Draft (work in progress), draft-ietf-diffserv-rsvp-01.txt, Novem-
ber 1998.

[BL+94] T. Berners-Lee et al. Uniform Resource Locators (URL). In RFC 1738,
December 1994.

179

180 BIBLIOGRAPHY

[BL+96] T. Berners-Lee et al. Hypertext Transfer Protocol – HTTP/1.0. In RFC 1945,
May 1996.

[BO97] L. Berger and T. O’Malley. RSVP Extensions for IPSEC Data Flows. In RFC
2207, September 1997.

[Bol93] J.-C. Bolot. Characterizing End-to-End Packet Delay and Loss in the Internet.
In High Speed Networks, volume 2, pages 305–323, 1993.

[BS98] L. Breslau and S. Shenker. Best-Effort versus Reservations: A Simple Com-
parative Analysis. In in Proc. of ACM SIGCOMM, Vancover, Canada, 1998.

[BV98] S. Berson and S. Vincent. Aggregation of Internet Integrated Services State. In
IETF Internet Draft (work in progress), draft-berson-rsvp-aggregation-00.txt,
August 1998.

[BVG97] J.-C. Bolot and A. Vega-Garcia. The Case for FEC-Based Error Control for
Packet Audio in the Internet. In ACM Multimedia Systems, 1997.

[BVGFPne] J.-C. Bolot, A. Vega-Garcia, and S. Fosse-Parisis. Free Phone, INRIA,
http://www.inria.fr/rodeo/fphone/.

[C+89] A. Coleman et al. Subjective Performance Evaluation of the REP-LTP Codec
for the Pan-European Cellular Digital Mobile Radio System. In in Proc.
ICASSP, pages 1075–1079, 1989.

[CCH92] A. Campell, G. Coulson, and D. Hutchison. A Suggested QOS Architecture
for Multimedia Communications. Technical report, Dept. of Computing, Lan-
caster University, U.K., November 1992.

[Co.va] Netscape Communications Co. Netscapes Software Coding Standards Guide
for Java, http://developer.netscape.com/tech/java/.

[Co.pt] Netscape Communications Co. Java Script 1.3 Documentation,
http://developer.netscape.com/tech/javascript/.

[D+94] B.J. Dempsey et al. On retransmission-based error control for continuous me-
dia traffic in packet-switching networks. Technical report, Dept. of Computer
Science, University of Virginia, February 1994.

[D+97] M. Degermark et al. Small Forwarding Tables for Fast Routing Lookups. In
in Proc. of ACM SIGCOMM, 1997.

[D+98a] B. Davie et al. Use of Label Switching with RSVP. In IETF Internet-Draft
(work in progress), draft-ietf-mpls-rsvp-00.txt, March 1998.

[D+98b] M. Degermark et al. IP Header Compression. In IETF Internet-Draft (work
in progress), draft-degermark-ipv6-hc-06.txt, June 1998.

BIBLIOGRAPHY 181

[DH95] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
In RFC 1883, Xerox PARC and Ipsilon Networks, December 1995.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. In
IETF Internet-Draft (work in progress), draft-ietf-ipngwg-ipv6-spec-v2-02.txt,
August 1998.

[DS78] Y. Dalal and C. Sunshine. Connection Management in Transport Protocols.
In Computer Networks, volume 2, No. 6, pages 454–473, December 1978.

[Eri93] H. Erikson. MBone: The Multicast Backbone. In Communications of the
ACM, volume 7, No. 5, pages 8–18, September 1993.

[F+97] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. In RFC 2068,
January 1997.

[FH98] P. Ferguson and G. Huston. Qualtiy of Service. In Wiley Computer Publishing,
1998.

[Fro97] K. Froitzheim. Multimedia-Kommunikation. In d-punkt Verlag, Heidelberg
(Germany), 1997.

[FW97] K. Froitzheim and H. Wolf. WebVideo - a Tool for WWW-based Teleop-
eration. In International Symposium on Industrial Electronics, Guimaraes,
Portugal, July 1997.

[G.196] ITU G.114. One-Way Transmission Time, ITU-T Recommendation G.114,
February 1996.

[GA98] M. Greis and M. Albrecht. Aggregation of Internet Integrated Services State
using Paramter-based Admission Control. In IETF Internet Draft (work in
progress), draft-greis-aggregation-with-pbac-00.txt, November 1998.

[Gadml] F. Gadegast. MPEG-FAQ, http://www.cc.iastate.edu/olc answers/packages/
graphics/mpeg.faq.html.

[Ger87] N. Gerfelder. Graphics Interchange Format (GIF) Specification, CompuServe
Incorporated, June 1987.

[GS95] A. Grace and A. Smith. Quality of Service control for adaptive distributed
multimedia applications using Esterel. In Second International Workshop on
High Performance Protocol Architectures, Sydney, December 1995.

[H+95] V. Hardman et al. Reliable audio for use over the Internet. In in Proc. of
INET’95, Honolulu, Hawaii, June 1995.

[H+98] M. Handley et al. SIP: Session Iinitiation Protocol. In IETF Internet Draft
(work in progress), draft-ietf-mmusic-sip-10.txt, May 1998.

182 BIBLIOGRAPHY

[H.293] ITU H.261. Video Codec for Audiovisual Services at px64 kbps, ITU-T Rec-
ommendation H.261, March 1993.

[H.396] ITU H.323. Visual telephone systems and equipment for local area networks
which provide a non-guaranteed quality of service, ITU-T Recommendation
H.323, May 1996.

[Han98] M. Handley. SDP: Session Description Protocol. In RFC 2327, ISI/LBNL,
April 1998.

[Hui97] C. Huitema. IPv6 - The new Internet Protocol. In 2nd edition, Prentice Hall,
1997.

[ISI98] ISI. RSVP Daemon Release 2a3, ftp://ftp.isi.edu/, August 1998.

[Jay80] N. S. Jayant. Effects of packet loss on waveform coded speech. In in Proc. of
the 5th Data Communications Symposium, pages 275–280, Atlant, Ga. 1980.

[JMat] V. Jacobson and S. McCanne. VAT - LBNL Audio Conferencing Tool,
http://www-nrg.ee.lbl.gov/vat/.

[JTC93] ISO IEC JTC1. Information Technology - Digital Compression and Coding
of Continuous-Tone still Images, International Standard ISO/IEC IS 10918,
1993.

[K+98] D. Katz et al. IPv6 Router Alert Option. In IETF Internet Draft (work in
progress), draft-ietf-ipngwg-ipv6router-alert-04.txt, February 1998.

[Kat97] D. Katz. IP router alert option. In RFC 2113,, February 1997.

[M+98] J. Martens et al. Voice over IP: the impact of RSVP. In in Proc. of SPIE,
volume 3529, Internet Routing and Quality of Service, November 1998.

[MD90] J. Mogul and S. Deering. Path MTU Discovery. In RFC 1191, November
1990.

[MHSC99] L. Mathy, D. Hutchison, S. Schmid, and G. Coulson. Improving RSVP for
Better Support of Internet Multimedia Communications. In presented at
ICMCS’99, Florence, Italy, 1999.

[MJ95] S. McCanne and V. Jacobson. vic: A flexible framework for packet video. In
in Proc. of ACM Multimedia ’95, November 1995.

[MKT98] S.B. Moon, J. Kurose, and D. Towsley. Packet audio playout delay adjustment:
performance bounds and algorithms. In ACM Multimedia Systems (1998)6,
pages 17–28, 1998.

BIBLIOGRAPHY 183

[Mon83] W.A. Montgomery. Techniques for packet voice synchronization. In IEEE
Select Areas Communication 6(1), pages 1022–1028, 1983.

[MSH98] L. Mathy, S. Schmid, and D. Hutchison. REDuced Overhead RSVP. Technical
report, Dept. of Computing, Lancaster University, U.K., September 1998.

[N+97] K. Nichols et al. A Two-bit Differentiated Services Architecture of the In-
ternet. In IETF Internet Draft (work in progress), draft-nichols-diff-svc-arch-
00.txt, November 1997.

[Pax96a] V. Paxson. End-to-End Routing Behavior in the Internet. In in Proc.
IEEE/ACM Transactions on Networking 5(5), pages 601–615, 1996.

[Pax96b] V. Paxson. End-to-End Routing Behavior in the Internet. In in Proc.
IEEE/ACM Transactions on Networking, Vol. 5, no. 5, pages 601–615, 1996.

[PG93] A.K. Parekh and R.G. Gallager. A generalized processor sharing approach
to flow control in integrated services networks: The multiple node case. In
in Proc. of the 12th Annual Joint Converence of the IEEE Computer and
Communications Societies on Networking, volume 2, pages 521–530, March
1993.

[Pos80a] J. Postel. User Datagram Protocol. In RFC 768, ISI, August 1980.

[Pos80b] J. Postel. DOD Standard Internet Protocol. In RFC 760, DARPA, January
1980.

[Pos80c] J. Postel. Transmission Control Protocol. In RFC 761, DARPA, January
1980.

[Pos81] J. Postel. Internet Protocol. In RFC 791, DARPA, September 1981.

[PS98] P. P. Pan and H. Schulzrinne. YESSIR: A simple reservation mechanism for
the Internet. In in Proc. International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), July 1998.

[R+94] R. Ramjee et al. Adaptive playout mechanisms for packetized audio appli-
cations in wide-are networks. In in Proc. of IEEE Infocom ’94, Montreal,
Canada, 1994.

[R+98a] E.C. Rosen et al. Multiprotocol Label Switching Architecture. In IETF
Internet-Draft (work in progress), draft-ietf-mpls-arch-02.txt, July 1998.

[R+98b] J. Rosenberg et al. Elevating RTP to Protocol Status. In IETF Internet Draft
(work in progress), draft-rosenberg-rtpproto-00.txt, September 1998.

[Riz97] L. Rizzo. The FreeBSD Audio Driver. Technical report, University of Pisa,
Italy, 1997.

184 BIBLIOGRAPHY

[RP94] J. Reynolds and J. Postel. Assigned Numbers. In RFC 1700, October 1994.

[S+96] H. Schulzrinne et al. RTP: A Transport Protocol for Real-Time Applications.
In RFC 1889, January 1996.

[S+97] D. Sanghi et al. Experimental assessment of end-to-end behavior on the In-
ternet. In in Proc. of IEEE Infocom ’93, San Francisco, CA, pages 867–887,
1997.

[S+98a] S. Schmid et al. QoS-based real-time audio streaming in IPv6 networks. In in
Proc. of SPIE, volume 3529, Internet Routing and Quality of Service, Novem-
ber 1998.

[S+98b] H. Schulzrinne et al. Real Time Streaming Protocol (RTSP). In RFC 2326,
April 1998.

[Sch92] H. Schulzrinne. Voice communication across the Internet: A network voice
terminal. Technical report, Dept. of Computer Science, University of Mas-
sachusetts, July 1992.

[Sch97] U. Schwantag. An Analysis of the Applicability of RSVP. Technical report,
Institute of Telematics, University of Karlsruhe (Germany), July 1997.

[Sch98] H. Schulzrinne. RTP Profile for Audio and Video Converences with Minimal
Control. In IETF Internet-Draft (work in progress), draft-ietf-avt-profile-new-
04.txt, November 1998.

[SDRS98] S. Schmid, M. Dunmore, N. Race, and A. Scott. RSVP Extensions for Flow
Labels. In IETF Internet-Draft (work in progress), draft-schmid-rsvp-fl-01.txt,
August 1998.

[SM90] N. Shacham and P. McKenney. Packet recovery in high-speed networks using
coding and buffer management. In in Proc. IEEE Infocom’ 90, San Fransisco,
CA, pages 124–131, May 1990.

[SPG97] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed Quality
of Service. In RFC 2212, September 1997.

[Ste97] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. In RFC 2001, NOAO, January 1997.

[T+96] Andreas Tirakis et al. Distributed Multimedia Architectures - State-of-the-
Art Report. Technical report, Project: Distributed Video Production (DVP),
September 1996.

[Tan96] A. Tanenbaum. Computer Networks. In 3rd edition, Prentice Hall, 1996.

BIBLIOGRAPHY 185

[Wro97a] J. Wroclawski. Specification of the Controlled-Load Network Element Service.
In RFC 2211, MIT LCS, September 1997.

[Wro97b] J. Wroclawski. The Use of RSVP with IETF Integrated Services. In RFC
2210, MIT LCS, September 1997.

[Z+93] L. Zhang et al. RSVP: A new Resource ReSerVation Protocol. In IEEE
Networks, volume 7, No. 5,, September 1993.

[ZK98] D. Zappala and J. Kann. RSRR – A Routing Interface for RSVP. In IETF
Internet-Draft (work in progress), draft-ietf-rsvp-routing-02.txt, July 1998.

Name: Stefan Schmid Matr. Nr. 280347

Erklärung

Ich erkläre, daß ich die Diplomarbeit selbständig verfaßt und keine anderen als die ange-
gebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .
(Unterschrift)

